首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, quasi-static fatigue crack growth simulations of homogeneous and bi-material interfacial cracks have been performed using element free Galerkin method (EFGM) under mechanical as well as thermo-elastic load. The thermo-elastic fracture problem is decoupled into thermal and elastic problems. The temperature distribution obtained by solving heat conduction equation is used as input in the elastic problem to get the displacement and stress fields. Discontinuities in the temperature and displacement fields are captured by extrinsic partition of unity enrichment technique. The values of stress intensity factors have been extracted from the EFGM solution by domain based interaction integral approach. The standard Paris fatigue crack growth law has been implemented for the life estimation of various model problems. The results obtained by EFGM under mechanical and thermo-elastic loads were compared with those obtained by FEM using remeshing approach.  相似文献   

2.
A bimaterial containing an interface crack and consisting of a homogeneous material and a functionally graded material (FGM) with a system of small internal cracks is considered. The thermal fracture of the biomaterial under the action of a heat flux applied to it at infinity is investigated. The problem is studied in the case where the interface crack is much larger than the internal ones. It is assumed that the thermal properties of the FGM are continuous functions of the thickness coordinate. Asymptotic analytical formulas for the thermal stress intensity factors (TSIFs) at the tips of the interface crack are obtained as series in a small parameter (the ratio between sizes of the internal and interface cracks). Then, the critical heat fluxes and the angles of propagation direction of the interface crack are calculated using the criterion of maximum circumferential stress. A parametric analysis shows that the propagation direction of the interface crack depends on the location and orientation of the system of internal cracks. The parameters of inhomogeneity of the FGM affect the value of TSIFs and, hence, the deflection angle of the interface crack.  相似文献   

3.
对不同功能梯度压电压磁层状介质中,共线界面裂纹对简谐应力波作用下的动态问题,进行了分析.经Fourier变换,使问题的求解转换为求解以裂纹面上位移间断为未知量的三重对偶积分方程,三重对偶方程可以采用Schmidt方法来求解,进而分析了功能梯度参数、入射波频率和层状介质厚度对应力、电位移和磁通量强度因子的影响.  相似文献   

4.
Cracks often exist in composite structures, especially at the interface of two different materials. These cracks can significantly affect the load bearing capacity of the structure and lead to premature failure of the structure. In this paper, a novel element for modeling the singular stress state around the inclined interface crack which terminates at the interface is developed. This new singular element is derived based on the explicit form of the high order eigen solution which is, for the first time, determined by using a symplectic approach. The developed singular element is then applied in finite element analysis and the stress intensity factors (SIFs) for a number of crack configurations are derived. It has been concluded that composites with complex geometric configurations of inclined interface cracks can be accurately simulated by the developed method, according to comparison of the results against benchmarks. It has been found that the stiffness matrix of the proposed singular element is independent of the element size and the SIFs of the crack can be solved directly without any post-processing.  相似文献   

5.
We consider two dissimilar elastic half-planes bonded by a nonhomogeneous elastic layer in which there is one crack at the lower interface between the elastic layer and the lower half-plane and two cracks at the upper interface between the elastic layer and the upper half-plane. The stress intensity factors for these three cracks are solved for when tension is applied perpendicular to the interface cracks. The material properties of the bonding layer vary continuously between those of the lower half-plane and those of the upper half-plane. The differences in the crack surface displacements are expanded in a series of functions that are zero outside the cracks. The unknown coefficients in the series are solved by the Schmidt method so as to satisfy the conditions inside the cracks. The stress intensity factors are calculated numerically for selected crack configurations.  相似文献   

6.
An interaction of a tunnel conductive crack and a distant strip electrode situated at the interface between two piezoelectric semi-infinite spaces is studied. The bimaterial is subject by an in-plane electrical field parallel to the interface and by an anti-plane mechanical loading. Using the presentations of electromechanical quantities at the interface via sectionally-analytic functions the problem is reduced to a combined Dirichlet-Riemann boundary value problem. Solution of this problem is found in an analytical form excepting some one-dimensional integrals calculations. Closed form expressions for the stress, the electric field and their intensity factors, as well as for the crack faces displacement jump are derived. On the base of these presentations the energy release rate is also found. The obtained solution is compared with simple particular case of a single crack without electrode and the excellent agreement is found out. An auxiliary plane problem for open and closed cracks between two isotropic materials is also considered. The mathematical model of this problem is identical to the above one, therefore, the obtained solution is used for this model. It is compared with finite element solution of a similar problem and good agreement is found out.  相似文献   

7.
The paper deals with the interaction between three Griffith cracks propagating under antiplane shear stress at the interface of two dissimilar infinite elastic half-spaces. The Fourier transform technique is used to reduce the elastodynamic problem to the solution of a set of integral equations which has been solved by using the finite Hilbert transform technique and Cooke’s result. The analytical expressions for the stress intensity factors at the crack tips are obtained. Numerical values of the interaction effect have been computed for and results show that interaction effects are either shielding or amplification depending on the location of each crack with respect to other and crack tip spacing.  相似文献   

8.
Discontinuous enrichment in finite elements with a partition of unity method   总被引:14,自引:0,他引:14  
A technique is presented to model arbitrary discontinuities in the finite element framework by locally enriching a displacement-based approximation through a partition of unity method. This technique allows discontinuities to be represented independently of element boundaries. The method is applied to fracture mechanics, in which crack discontinuities are represented using both a jump function and the asymptotic near-tip fields. As specific examples, we consider cracks and crack growth in two-dimensional elasticity and Mindlin–Reissner plates. A domain form of the J-integral is also derived to extract the moment intensity factors. The accuracy and utility of the method is also discussed.  相似文献   

9.
We consider diffraction by a semi-infinite crack located alonga fusion interface between two differing elastic media. Twotypes of crack, namely open and partially closed cracks, areinvestigated. An open crack is modelled by a stress-free contactboundary condition and a partially closed crack is modelledby a spring contact boundary condition. For the latter, thejump in the stress across the crack is assumed to be proportionalto the jump in the displacement across the crack. This situationarises in, for example, a K-weld where the fine grain of theparent material (for example, ferritic or forged austeniticsteel) is in stark contrast with the coarse-grained weld metal(for example, austenitic weld metal). In the metal weld thedirection of the grain axis varies through the metal. However,diffraction is a local phenomenon and so the austenitic steelis assumed to have a zonal axis so that it may be modelled bya transversely isotropic composite. The ferritic or forged austeniticsteel will be modelled as an isotropic material.  相似文献   

10.
A method of creating the stiffness matrix of a hexahedral eight-node finite element with a single, nonpropagating, transverse, one-edge crack at half of its length is presented in this paper. The crack was modelled by adding an additional flexibility matrix to that of the noncracked element. The terms of the additional matrix have been calculated by use of the laws of fracture mechanics. Employing the elaborated element a numerical test has been worked out, the results of which are compared with the data of analytical solutions accessible in the literature, and a high conformity with them has been obtained. The element presented in the paper may be applied to the static and dynamic analysis of different types of structural elements with material defects in the form of cracks. The described method of creating the stiffness matrix of the element allows to create different kinds of finite elements with cracks provided that the stress intensity factors for a given type of crack are known.  相似文献   

11.
超导薄膜是一种采用化学涂层制备而成的多层薄膜结构,作为性能优越的导电功能结构材料,其载流能力与结构完整性直接相关.在超导薄膜制备过程中,超导层与金属基底之间的界面裂纹很难避免.因此,在载流运行过程中,由于外磁场的存在,这类界面裂纹的强度问题成为关键.为此,该文针对超导薄膜结构,以磁通量子穿透薄膜理论和线弹性断裂理论为基础,建立了研究超导层与基底界面裂纹强度问题的解析模型.深入分析了外加磁场作用下界面裂纹强度问题,得到了超导磁通流动对裂纹尖端应力场和能量释放率的影响.结果表明:磁通流动速度越大,界面裂纹尖端处应力越大且能量释放率越大,这将导致界面更容易发生裂纹破坏.该文所得结果有助于分析相关的界面裂纹问题.  相似文献   

12.
压电材料中两平行不相等界面裂纹的动态特性研究   总被引:1,自引:1,他引:0  
利用Schmidt方法,研究了压电材料中两个平行不相等的可导通界面裂纹对简谐反平面剪切波的散射问题.利用Fourier变换,使问题的求解转换为对两对以裂纹面张开位移为未知变量的对偶积分方程的求解.数值计算结果表明,动态应力强度因子及电位移强度因子受裂纹的几何参数、入射波频率的影响.在特殊情况下,与已有结果进行了比较分析.同时,电位移强度因子远小于不可导通电边界条件下相应问题的结果.  相似文献   

13.
We investigate the anti-plane shear problem of a curvilinear crack lying along the interface of an arbitrarily shaped elastic inhomogeneity embedded in an infinite matrix subjected to uniform stresses at infinity. Complex variable and conformal mapping techniques are used to derive an analytical solution in series form. The problem is first reduced to a non-homogeneous Riemann–Hilbert problem, the solution of which can be obtained by evaluating the associated Cauchy integral. A set of linear algebraic equations is obtained from the compatibility condition imposed on the resulting analytic function defined in the inhomogeneity and its Faber series expansion. Each of the unknown coefficients in the corresponding analytic functions can then be uniquely determined by solving the linear algebraic equations, which are written concisely in matrix form. The resulting analytical solution is then used to quantify the displacement jump across the debonded section of the interface as well as the traction distribution along the bonded section of the interface. In addition, our solution allows us to obtain mode-III stress intensity factors at the two crack tips. The solution to the anti-plane problem of a partially debonded elliptical inhomogeneity containing a confocal crack is also derived using a similar method.  相似文献   

14.
压电材料中两平行对称可导通裂纹断裂性能分析   总被引:7,自引:4,他引:3  
周振功  王彪 《应用数学和力学》2002,23(12):1211-1219
采用Schmidt研究了压电材料中对称平行的双可导通裂纹的断裂性能,利用富里叶变换使问题的求解转换为求解两对以裂纹面位移之差为未知变量的对偶积分方程,并采用Schmidt方法来对这两对对偶积分程进行数值求解。结果表明应力强度因子和电位移强度因子与裂纹的几何尺寸有关。与不可导通裂纹有关结果相比,可导通裂纹的电位移强度因子远小于相应问题不可导通裂纹的电位移强度因子。  相似文献   

15.
The aim of the present paper is to analyse the behaviour ofthe stress and displacement fields in the vicinity of the tipof a crack moving along a bi-material interface. For simplicity,we consider a straight interface of infinite extent. We assumethat the two phases are separated by a thin layer which is either‘soft’ or ‘stiff’ compared to the othertwo phases. We derive the transmission conditions which takeinto account the material properties of the layer and modelthe way the load is transferred across the layer from one phaseto the other. We assume that the point of interchange in theboundary/transmission conditions coincides with the crack tipthat moves along the interface boundary with a constant speed.We develop an integral equation formulation and derive asymptoticformulae for the out-of-plane displacement and the Mode-IIIstress intensity factor associated with such a motion of thecrack inside the interphase layer. The theoretical results areillustrated by numerical examples.  相似文献   

16.
本文研究了两个材半限弹性的接合面附近存在与接合面平行的双裂纹,并承受剪切冲击时的瞬态应力,运用付里叶(Fourier)和拉普拉斯(Laplace)变换,将问题归结为求解二元积分方程,求解时将裂纹所在面上,下的位移差展成级数,并让其自动满足裂纹面外的位移差为零的条件,利用裂纹面上的边界条件和施密特(Schmidt)方法求解级数中的待定系数,在拉普拉斯像空间中,求得动应力强度因子,并将其数值地逆变换至  相似文献   

17.
压电压磁复合材料中界面裂纹对弹性波的散射   总被引:5,自引:1,他引:4  
利用Schmidt方法分析了压电压磁复合材料中可导通界面裂纹对反平面简谐波的散射问题.经过富里叶变换得到了以裂纹面上的间断位移为未知变量的对偶积分方程A·D2在求解对偶积分方程的过程中,裂纹面上的间断位移被展开成雅可比多项式的形式.数值模拟分析了裂纹长度、波速和入射波频率对应力强度因子、电位移强度因子、磁通量强度因子的影响A·D2从结果中可以看出,压电压磁复合材料中可导通界面裂纹的反平面问题的应力奇异性形式与一般弹性材料中的反平面问题应力奇异性形式相同.  相似文献   

18.
The boundary value problem for the Laplace equation is studied on a domain with smooth compact boundary and with smooth internal cracks. The Neumann or the Robin condition is given on the boundary of the domain. The jump of the function and the jump of its normal derivative is prescribed on the cracks. The solution is looked for in the form of the sum of a single layer potential and a double layer potential. The solvability of the corresponding integral equation is determined and the explicit solution of this equation is given in the form of the Neumann series. Estimates for the absolute value of the solution of the boundary value problem and for the absolute value of the gradient of the solution are presented.  相似文献   

19.
The paper is focused on the dynamic analysis of two collinear dielectric cracks in a piezoelectric material under the action of in-plane electromechanical impacts. Considering the dielectric permeability of crack interior, the electric displacements at the crack surfaces are governed by the jumps of electric potential and crack opening displacement across the cracks. The permeable and impermeable crack models are the limiting cases of the general one. The Laplace and Fourier transform techniques are further utilized to solve the mixed initial-boundary-value problem, and then to obtain the singular integral equations with Cauchy kernel, which are solved numerically. Dynamic intensity factors of stress, electric displacement and crack opening displacement are determined in time domain by means of a numerical inversion of the Laplace transform. Numerical results for PZT-5H are calculated to show the effects of the dielectric permeability inside the cracks, applied electric loadings and the geometry of the cracks on the fracture parameters in graphics. The observations reveal that based on the COD intensity factor, a positive electric field enhances the dynamic dielectric crack growth and a negative one impedes the dynamic dielectric crack growth in a piezoelectric solid.  相似文献   

20.
The present study examined mixed mode cracking in a transversely isotropic infinite cylinder. The solutions to axisymmetric Volterra climb and glide dislocations in an infinite circular cylinder of the transversely isotropic material are first obtained. The solutions are represented in terms of the biharmonic stress function. Next, the problem of a transversely isotropic infinite cylinder with a set of concentric axisymmetric penny-shaped, annular, and circumferential cracks is formulated using the distributed dislocation technique. Two types of loadings are considered: (i) the lateral cylinder is loaded by two self-equilibrating distributed shear stresses; (ii) the curved surface of the cylinder is under the action of a distributed normal stress. The resulting integral equations are solved by using a numerical scheme to compute the dislocation density on the borders of the cracks. The dislocation densities are employed to determine stress intensity factors for axisymmetric interacting cracks. Finally, a good amount of examples are solved to depict the effect of crack type and location on the stress intensity factors at crack tips and interaction between cracks. Numerical solutions for practical materials are presented and the effect of transverse isotropy on stress intensity factors is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号