共查询到20条相似文献,搜索用时 15 毫秒
1.
The large-amplitude free vibration analysis of functionally graded beams is investigated by means of a finite element formulation. The Von-Karman type nonlinear strain–displacement relationships are employed where the ends of the beam are constrained to move axially. The effects of the transverse shear deformation and rotary inertia are included based upon the Timoshenko beam theory. The material properties are assumed to be graded in the thickness direction according to the power-law distribution. A statically exact beam element which devoid the shear locking effect with displacement fields based on the first order shear deformation theory is used to study the geometric nonlinear effects on the vibrational characteristics of functionally graded beams. The finite element method is employed to discretize the nonlinear governing equations, which are then solved by the direct numerical integration technique in order to obtain the nonlinear vibration frequencies of functionally graded beams with different boundary conditions. The influences of power-law exponent, vibration amplitude, beam geometrical parameters and end supports on the free vibration frequencies are studied. The present numerical results compare very well with the results available from the literature where possible. Some new results for the nonlinear natural frequencies are presented in both tabular and graphical forms which can be used for future references. 相似文献
2.
In the present study, an efficient finite element model for vibration analysis of a nonlocal Euler–Bernoulli beam has been reported. Nonlocal constitutive equation of Eringen is proposed. Equations of motion for a nonlocal Euler–Bernoulli are derived based on varitional statement. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. The model has been verified with the previously published works and found a good agreement with them. Vibration characteristics, such as fundamental frequencies, are illustrated in graphical and tabulated form. Numerical results are presented to figure out the effects of nonlocal parameter, slenderness ratios, rotator inertia, and boundary conditions on the dynamic characteristics of the beam. The above mention effects play very important role on the dynamic behavior of nanobeams. 相似文献
3.
In this paper, the free vibration of a two-dimensional functionally graded circular cylindrical shell is analyzed. The equations of motion are based on the Love’s first approximation classical shell theory. The spatial derivatives of the equations of motion and boundary conditions are discretized by the methods of generalized differential quadrature (GDQ) and generalized integral quadrature (GIQ). Two kinds of micromechanics models, viz. Voigt and Mori–Tanaka models are used to describe the material properties. To validate the results, comparisons are made with the solutions for FG cylindrical shells available in the literature. The results of this study show that the natural frequency of the material can be modified in order to meet the expected results through manipulation of the constituent volume fractions. A comprehensive comparison is then drawn between ordinary and 2-D FG cylindrical shells. 相似文献
4.
Sh. Hosseini-Hashemi H. Rokni Damavandi Taher H. Akhavan M. Omidi 《Applied Mathematical Modelling》2010
The main objective of this research work is to present analytical solutions for free vibration analysis of moderately thick rectangular plates, which are composed of functionally graded materials (FGMs) and supported by either Winkler or Pasternak elastic foundations. The proposed rectangular plates have two opposite edges simply-supported, while all possible combinations of free, simply-supported and clamped boundary conditions are applied to the other two edges. In order to capture fundamental frequencies of the functionally graded (FG) rectangular plates resting on elastic foundation, the analysis procedure is based on the first-order shear deformation plate theory (FSDT) to derive and solve exactly the equations of motion. The mechanical properties of the FG plates are assumed to vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. First, a new formula for the shear correction factors, used in the Mindlin plate theory, is obtained for FG plates. Then the excellent accuracy of the present analytical solutions is confirmed by making some comparisons of the results with those available in literature. The effect of foundation stiffness parameters on the free vibration of the FG plates, constrained by different combinations of classical boundary conditions, is also presented for various values of aspect ratios, gradient indices, and thickness to length ratios. 相似文献
5.
This work deals with a study of the vibrational properties of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs) under the actions of moving load. Timoshenko and Euler-Bernoulli beam theories are used to evaluate dynamic characteristics of the beam. The Eshelby-Mori-Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. An embedded carbon nanotube in a polymer matrix and its surrounding inter-phase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The primary contribution of the present work deals with the global elastic properties of nano-structured composite beams. The system of equations of motion is derived by using Hamilton’s principle under the assumptions of the Timoshenko beam theory. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. In order to evaluate time response of the system, Newmark method is also used. Numerical results are presented in both tabular and graphical forms to figure out the effects of various material distributions, carbon nanotube orientations, velocity of the moving load, shear deformation, slenderness ratios and boundary conditions on the dynamic characteristics of the beam. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam and it is believed that new results are presented for dynamics of FG nano-structure beams under moving loads which are of interest to the scientific and engineering community in the area of FGM nano-structures. 相似文献
6.
A finite element method (FEM) of B-spline wavelet on the interval (BSWI) is used in this paper to solve the free vibration and buckling problems of plates based on Reissner–Mindlin theory. By aid of the high accuracy of B-spline functions approximation for structural analysis, the proposed method could obtain a fast convergence and a satisfying numerical accuracy with fewer degrees of freedoms (DOF). The numerical examples demonstrate that the present BSWI method achieves the high accuracy compared to the exact solution and others existing approaches in the literatures. The BSWI finite element has potential to be used as a numerical method in analysis and design. 相似文献
7.
Nonlinear finite element analysis of functionally graded plates integrated with patches of piezoelectric fiber reinforced composite 总被引:1,自引:0,他引:1
In this paper, a nonlinear static finite element analysis of simply supported smart functionally graded (FG) plates in the presence/absence of the thermal environment has been presented. The substrate FG plate is integrated with the patches of piezoelectric fiber reinforced composite (PFRC) material which act as the distributed actuators of the plate. The material properties of the FG substrate plate are assumed to be temperature dependent and graded along the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The derivation of this nonlinear thermo-electro-mechanical coupled finite element model is based on the first order shear deformation theory and the Von Karman type geometric nonlinearity. The numerical solutions of the nonlinear equations of the finite element model are obtained by employing the direct iteration method. The numerical illustrations suggest the potential use of the distributed actuator made of the PFRC material for active control of nonlinear deformations of smart FG structures. The effects of volume fraction index of the FG material of the substrate plates and the locations of the PFRC patches on the control authority of the patches are investigated. Emphasis has also been placed on investigating the effect of variation of piezoelectric fiber orientation angle in the PFRC patches on their actuation capability for counteracting the large deflections of FG plates. 相似文献
8.
In this paper, to consider all surface effects including surface elasticity, surface stress, and surface density, on the nonlinear free vibration analysis of simply-supported functionally graded Euler–Bernoulli nanobeams using nonlocal elasticity theory, the balance conditions between FG nanobeam bulk and its surfaces are considered to be satisfied assuming a cubic variation for the component of the normal stress through the FG nanobeam thickness. The nonlinear governing equation includes the von Kármán geometric nonlinearity and the material properties change continuously through the thickness of the FG nanobeam according to a power-law distribution of the volume fraction of the constituents. The multiple scale method is employed as an analytical solution for the nonlinear governing equation to obtain the nonlinear natural frequencies of FG nanobeams. The effect of the gradient index, the nanobeam length, thickness to length ratio, mode number, amplitude of deflection to radius of gyration ratio and nonlocal parameter on the frequency ratios of FG nanobeams is investigated. 相似文献
9.
《Applied Mathematical Modelling》2014,38(7-8):1969-1982
For convenience, a two-node conventional elastic beam element (C beam element) with the displacements of its 2nd node replaced by those of center of gravity (c.g.) of the joined rigid bar is called the modified beam element (M beam element). The objective of this paper is to present a modified finite element method (modified FEM) such that the free vibration characteristics of a rigid bar supported by a number of elastic beams can be easily determined. First of all, the displacements for the 2nd node of a C beam element joined with the rigid bar are determined in terms of those for the c.g. of the joined rigid bar to establish the M beam element. Next, the mass and stiffness matrices for the M beam element are derived based on the displacements for the 1st node of the C beam element and those for the c.g. of the joined rigid bar. Then, the overall property matrices of the entire unconstrained vibrating system (i.e. a rigid bar supported by a number of elastic beams) can be determined by using the assembly technique of the conventional FEM and considering the effects of lumped mass and rotary inertia of the rigid bar. Finally, the boundary (supporting) conditions are imposed to produce the effective property matrices of the constrained vibrating system and then the free vibration characteristics are determined with the standard approach. In order to confirm the presented theory and the developed computer program, the rigid bar is modeled by a number of C beam elements with bigger Young’s modulus (ER) and the conventional FEM is used to determine the natural frequencies and associated mode shapes of the vibrating system. It is found that the latter will converge to the corresponding ones obtained from the presented modified FEM when the magnitude of ER increases to certain values. 相似文献
10.
Hasan Serter Yalcin 《Applied mathematics and computation》2009,212(2):377-386
This study analyses the free vibrations of circular thin plates for simply supported, clamped and free boundary conditions. The solution method used is differential transform method (DTM), which is a semi-numerical-analytical solution technique that can be applied to various types of differential equations. By using DTM, the governing differential equations are reduced to recurrence relations and its related boundary/regularity conditions are transformed into a set of algebraic equations. The frequency equations are obtained for the possible combinations of the outer edge boundary conditions and the regularity conditions at the center of the circular plate. Numerical results for the dimensionless natural frequencies are presented and then compared to the Bessel function solution and the numerical solutions that appear in literature. It is observed that DTM is a robust and powerful tool for eigenvalue analysis of circular thin plates. 相似文献
11.
An inverse forced vibration problem, based on the conjugate gradient method (CGM), (or the iterative regularization method), is examined in this study to estimate the unknown spatial and temporal-dependent external forces for the cutting tools by utilizing the simulated beam displacement measurements. The tool is represented by an Euler–Bernoulli beam. The accuracy of the inverse analysis is examined by using the simulated exact and inexact displacement measurements. The numerical experiments are performed to test the validity of the present algorithm by using different types of external forces, sensor arrangements and measurement errors. Results show that excellent estimations on the external forces can be obtained with any arbitrary initial guesses. 相似文献
12.
Using a three-dimensional layerwise-finite element method, the free vibration of thick laminated circular and annular plates supported on the elastic foundation is studied. The Pasternak-type formulation is employed to model the interaction between the plate and the elastic foundation. The discretized governing equations are derived using the Hamilton’s principle in conjunction with the layerwise theory in the thickness direction, the finite element (FE) in the radial direction and trigonometric function in the circumferential direction, respectively. The fast rate of convergence of the method is demonstrated and to verify its accuracy, comparison studies with the available solutions in the literature are performed. The effects of the geometrical parameters, the material properties and the elastic foundation parameters on the natural frequency parameters of the laminated thick circular and annular plates subjected to various boundary conditions are presented. 相似文献
13.
This study contributes a practical approach for the fuzzy free vibration quantification of functionally graded semi-rigid frame structures. A new Timoshenko beam element is formulated to include the connection rigidity for the analysis purpose. The finite element formulation is general to present different semi-rigid conditions, whereas hinged and rigid connections are special cases. Furthermore, an efficient response-surface-based fuzzy analysis is established based on the α–cut strategy and first-order Taylor's approximation to predict the fuzzy natural frequencies of the structures. Highlighted point is that various input uncertainties, such as the material characteristics, the member dimensions, and the connection rigidities, can be incorporated in the analysis by the presented fuzzy methodology. Computational efficiency and correctness of the proposed method are shown, and the effect of the uncertainties, especially of the connection rigidities, on the natural frequency of semi-rigid FGM structures is explored via solving some numerical examples. 相似文献
14.
《Applied Mathematical Modelling》2014,38(11-12):3054-3066
The large deflections of tapered functionally graded beams subjected to end forces are studied by using the finite element method. The material properties of the beams are assumed to vary through the thickness direction according to a power law distribution. A first order shear deformable beam element employed the exact polynomials to interpolate the transverse displacement and rotation, is formulated in the context of the co-rotational approach. The large deflection response of the beams is computed by using the arc-length control algorithm in combination with the Newton–Raphson iterative method. The numerical results show that the formulated element is capable to assess accurately the response of the beams by using just several elements. A parametric study is given to examine the influence of the material non-homogeneity, taper ratio as well as the aspect ratio on the large deflection behaviour of the beams. 相似文献
15.
An extended theory for elastic and plastic beam problems is studied. By introducing new dependent and independent variables, the standard Timoshenko beam model is extended to take account of shear variation in the lateral direction. The dynamic governing equations are established via Hamilton's principle, and existence and uniqueness results for the solution of the static problem are proved. Using the theory of convex analysis, the duality theory for the extended beam model is developed. Moreover, the extended theory for rigid-perfectly plastic beams is also established. Based on the extended model, a finite-element method is proposed and numerical results are obtained indicating the usefulness of the extended theory in applications.The work of the first author was supported in part by National Science Foundation under Grant DMS9400565. 相似文献
16.
In this work, the use of mini cantilever beams for characterization of rheological properties of viscous materials is demonstrated. The dynamic response of a mini cantilever beam partially submerged in air and water is measured experimentally using a duel channel PolyTec scanning vibrometer. The changes in dynamic response of the beam such as resonant frequency, and frequency amplitude are compared as functions of the rheological properties (density and viscosity) of fluid media. Next, finite element analysis (FEA) method is adopted to predict the dynamic response of the same cantilever beam. The numerical prediction is then compared with experimental results already performed to validate the FEA modeling scheme. Once the model is validated, further numerical analysis was conducted to investigate the variation in vibration response with changing fluid properties. Results obtained from this parametric study can be used to measure the rheological properties of any unknown viscous fluid. 相似文献
17.
The Neumann series method has been used for the first time to solve the boundary value problem of free axisymmetric and nonaxisymmetric vibrations of continuous and discrete-continuous functionally graded circular plate on the basis of the classical plate theory. The equation of motion and the general solution for a functionally graded circular plate with a very complex system of a discrete elements attached, such as concentric ring masses, elastic supports, rotational springs, and damping elements are presented for the first time. The particular continuous solutions to the defined differential equations are obtained as the Neumann power series rapidly, absolutely, and uniformly convergent to the exact eigenfrequencies for any physically justified values of the plate's parameters on the basis of the properties of the obtained closed-form kernels of the Volterra integral equations. The multiparametric nonlinear characteristic equations for plate with classical and nonclassical boundary conditions are defined and numerically solved to obtain the full spectrum of eigenfrequencies in a simple way. The effects of the position and stiffness of ring supports and of singularities as the radii of supports shrink to the center of the plate on the dimensionless eigenfrequencies of homogeneous and functionally graded circular plate with sliding support and elastic constraints are comprehensively studied and presented for the first time. The accuracy of the proposed low-computational-cost method is demonstrated by comparison of the numerical results with those available in the literature. 相似文献
18.
19.
An analytical solution based on a new exact closed form procedure is presented for free vibration analysis of stepped circular and annular FG plates via first order shear deformation plate theory of Mindlin. The material properties change continuously through the thickness of the plate, which can vary according to a power-law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. Based on the domain decomposition technique, five highly coupled governing partial differential equations of motion for freely vibrating FG plates were exactly solved by introducing the new potential functions as well as using the method of separation of variables. Several comparison studies were presented by those reported in the literature and the FEM analysis, for various thickness values and combinations of stepped thickness variations of circular/annular FG plates to demonstrate highly stability and accuracy of present exact procedure. The effect of the geometrical and material plate parameters such as step thickness ratios, step locations and the power law index on the natural frequencies of FG plates is investigated. 相似文献
20.
Based on the first order shear deformation theory, free vibration behavior of functionally graded (FG) annular sector plates integrated with piezoelectric layers is investigated. The distribution of electric potential along the thickness direction of piezoelectric layers which is assumed to be a combination of linear and sinusoidal functions, satisfies both open and closed circuit electrical boundary conditions. Through a reformulation of governing equations and harmonic motion assumption, a novel decoupling method is suggested to transform the six second order coupled partial differential equations of motion into two eighth order and fourth order equations. A Fourier series method is then employed to present analytical solutions for free vibration of smart FG annular sector plates with simply supported radial edges and arbitrarily supported circular edges. The results, which can be used as a benchmark and suitable for design purposes, are verified with those reported in the literature. Finally, by presenting extensive ranges of frequencies, the effects of geometric parameters, power law index, FG and piezoelectric materials, electrical and mechanical boundary conditions as well as the piezoelectric layer thickness on vibration response of smart annular sector plates are discussed in detail. 相似文献