首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A new rigorous mathematical model for evaporation/condensation, including boiling, has been proposed. A problem of phase transition and in particular evaporation/condensation is one of the most acute problems of modern technology with numerous applications in industry, such as: in refrigeration, distillation in chemical industry. It is very common to use equilibrium evaporation model, which assumes that concentrations of species in the gas phase is always at saturated condition. Such kind of approach can lead to significant errors, resulting in negative concentrations in complex computer simulations. In this work two analytical solution of simplified differential-algebraic system have been obtained. One of them was deduced using assumption that the process is isothermal and gas volume fraction is constant. In the second solution the assumption about gas volume fraction has been removed. The code for numerical solution of differential-algebraic system, using conservative scheme, has been developed. It was designed to solve both systems of equations with boiling and without. Numerical calculations of ammonia-water system with various initial conditions, which correspond to evaporation and/or condensation of both components, have been performed. It has been shown that, although system quickly evolves to quasi equilibrium state (the differences between current and equilibrium concentrations are small) it is necessary to use non-equilibrium evaporation model, to calculate accurately evaporation/condensation rates, and consequently all other dependent variables. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In this paper, a fully analytical solution technique is established for the solution of unidirectional, conduction-dominated, alloy solidification problems. By devising appropriate averaging techniques for temperature and phase-fraction gradients, governing equations inside the mushy region are made inherently homogeneous. The above formulation enables one to obtain complete analytical solutions for solid, liquid and mushy regions, without resorting to any numerical iterative procedure. Due considerations are given to account for variable properties and different microscopic models of alloy solidification (namely, equilibrium and non-equilibrium models) in the two-phase domain. The results are tested for the problem of solidification of a NH4Cl–H2O solution, and compared with those from existing analytical models as well as with the corresponding results from a fully numerical simulation. The effects of different microscopic models on solidification behaviour are illustrated, and transients in temperature and heat flux distribution are also analysed. A good agreement between the present solutions and results from computational simulation is observed.  相似文献   

3.
This paper is concerned with the general formulation of linear problems in rod elastostatics, and with the identification of their common formal and structural features, valid for every kinematical hypothesis. The generalized variables (section forces and generalized deformations) defining the 1-dimensional model are introduced in a consistent and natural way, through a convenient factorization of the density of complementary potential energy, for every kinematical constraint which can be expressed as a linear combination of the generalized displacements. The identification of this complementary energy function with the Hamiltonian functional of analytical mechanics allows a systematic procedure to construct the equations which rule this class of problems. In this frame, the main target is to establish the required conditions to write the rod equilibrium equations in a purely statical form (with no interplay of kinematical variables). We primarily conclude that this is possible when the kinematics of the cross-sections is constrained to a rigid body movement. As a consequence, the concept of hyperbeam is proposed in order to define those models with deformation modes beyond rigid body movements of the cross section: in them, section forces and generalized displacements are coupled in the equilibrium equations. This is related to the idea of local static indeterminacy (hyperstaticity) and justifies the new name.  相似文献   

4.
In this work, a dual porosity model of reactive solute transport in porous media is presented. This model consists of a nonlinear-degenerate advection-diffusion equation including equilibrium adsorption to the reaction combined with a first-order equation for the non-equilibrium adsorption interaction processes. The numerical scheme for solving this model involves a combined high order finite volume and finite element scheme for approximation of the advection-diffusion part and relaxation-regularized algorithm for nonlinearity-degeneracy. The combined finite volume-finite element scheme is based on a new formulation developed by Eymard et al. (2010) [10]. This formulation treats the advection and diffusion separately. The advection is approximated by a second-order local maximum principle preserving cell-vertex finite volume scheme that has been recently proposed whereas the diffusion is approximated by a finite element method. The result is a conservative, accurate and very flexible algorithm which allows the use of different mesh types such as unstructured meshes and is able to solve difficult problems. Robustness and accuracy of the method have been evaluated, particularly error analysis and the rate of convergence, by comparing the analytical and numerical solutions for first and second order upwind approaches. We also illustrate the performance of the discretization scheme through a variety of practical numerical examples. The discrete maximum principle has been proved.  相似文献   

5.
基于Brinkman Darcy扩展模型和非局部热平衡模型,考虑液相和固相含有内热源的情况,建立了多孔介质平板通道传热的一般模型.分别采用直接法和间接法将液相与固相能量方程解耦,进而求得充分发展传热条件下的多孔介质温度场.与直接解耦法相比,间接解耦法可在原始边界条件下求解二阶微分方程,更加简单易行.通过对无量纲温度表达式系数以及温度分布的比较,验证了两种求解方法的等价性.在两种极限情形下,间接法所得温度分布解析解与现有文献结果相当吻合,这也在一定程度上证明了所建模型更具一般性.参数分析表明,液固两相温差随着Biot数或有效导热系数比的增大而减小,Nusselt数随着内热源比的增大而减小.  相似文献   

6.
Based on the corrected finite pointset method (CFPM) with CPU-GPU heteroid parallelization (CFPM-GPU), a high-efficiency, accurate and fast parallel algorithm was developed for the high-dimensional phase separation phenomena governed by the multi-component Cahn-Hilliard (C-H) equation in complex domains. The proposed parallel algorithm with the CFPM-GPU was built in a process like: ① introduce the Wendland weight function into the discretization of the finite pointset method (FPM) scheme for the 1st/2nd spatial derivatives, based on the Taylor series and the weighted least square concept; ② use the above FPM scheme twice to approximate the 4th spatial derivative in the C-H equation, which is called the CFPM method; ③ for the first time establish an accelerating parallel algorithm for the CFPM with local matrices by means of a single GPU card based on the CUDA programming. Two benchmark problems of 2D radially and 3D spherically symmetric C-H equations were first solved to test the accuracy and high-efficiency of the proposed CFPM-GPU, and the acceleration ratio of the GPU parallelization to the single CPU computation is about 160. Subsequently, the proposed CFPM-GPU was used to predict the 2D/3D multi-phase separation phenomena in complex domains, and the prediction was compared with other numerical results. The numerical results show that, the proposed CFPM-GPU is valid and high-efficiency to simulate the 2D/3D multi-phase separation cases in complex domains. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

7.
A very simple and efficient local variational iteration method (LVIM), or variational iteration method with local property, for solving problems of nonlinear science is proposed in this paper. The analytical iteration formula of this method is derived first using a general form of first order nonlinear differential equations, followed by straightforward discretization using Chebyshev polynomials and collocation method. The resulting numerical algorithm is very concise and easy to use, only involving highly sparse matrix operations of addition and multiplication, and no inversion of the Jacobian in nonlinear problems. Apart from the simple yet efficient iteration formula, another extraordinary feature of LVIM is that in each local domain, all the collocation nodes participate in the calculation simultaneously, thus each local domain can be regarded as one “node” in calculation through GPU acceleration and parallel processing. For illustration, the proposed algorithm of LVIM is applied to various nonlinear problems including Blasius equations in fluid mechanics, buckled bar equations in solid mechanics, the Chandrasekhar equation in astrophysics, the low-Earth-orbit equation in orbital mechanics, etc. Using the built-in highly optimized ode45 function of MATLAB as a comparison, it is found that the LVIM is not only very accurate, but also much faster by an order of magnitude than ode45 in all the numerical examples, especially when the nonlinear terms are very complicated and difficult to evaluate.  相似文献   

8.
This paper presents an improved active contour model by combining the Chan–Vese model, the region-scalable fitting energy model, the globally convex segmentation method and the split Bregman method. A weight function that varies with the location of a given image is used to control the influence of the local and global information dynamically. We first present our model in a 2-phase level set formulation and then extend it to a multi-phase formulation. By taking the local and global information into consideration together, our model can segment more general images, especially images with intensity inhomogeneity. Our model has been applied to synthetic and real images with promising results. Numerical results show the advantages of our model compared with other models. The accuracy and efficiency are demonstrated by the numerical results. Besides, our model is robust in the presence of noise.  相似文献   

9.
刘金魁  孙悦  赵永祥 《计算数学》2021,43(3):388-400
基于HS共轭梯度法的结构,本文在弱假设条件下建立了一种求解凸约束伪单调方程组问题的迭代投影算法.该算法不需要利用方程组的任何梯度或Jacobian矩阵信息,因此它适合求解大规模问题.算法在每一次迭代中都能产生充分下降方向,且不依赖于任何线搜索条件.特别是,我们在不需要假设方程组满足Lipschitz条件下建立了算法的全...  相似文献   

10.
This paper considers a recently proposed interval algebraic model of linear equilibrium equations in mechanics. Based on the algebraic completion of classical interval arithmetic (called Kaucher arithmetic), this model provides much smaller ranges for the unknowns than the model based on classical interval arithmetic and fully conforms to the equilibrium principle. The general form of interval equilibrium equations for truss structures is presented. Two numerical approaches for finding the formal (algebraic) solution to the considered class of interval equilibrium equations are proposed. A methodology for adjusting interval parameters so that the equilibrium equations be completely satisfied is also presented. Numerical examples illustrate the theoretical considerations.  相似文献   

11.
Vasily Saurin  Georgy Kostin 《PAMM》2008,8(1):10335-10336
A regular asymptotic approach to analysis of 3D beam stress–strain states is proposed based on the linear theory of elasticity and the method of integrodifferential relations. Using the integral formulation of Hooke's law and polynomial expansions of unknown stress and displacement functions with respect to transversal Cartesian coordinates the initial system of partial differential equations is reduced to a countable system of ordinary differential equations with constant coefficients. For rectilinear beams with rectangular cross–sections the consistent boundary value problems describing independently the compression and stretch, bends, and torsion states are derived. To find equilibrium stress and admissible displacement fields satisfying boundary conditions an effective numerical algorithm is worked out. Integral and local criteria for explicit bilateral estimates of resulted solution quality are proposed. The numerical results are presented and discussed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The aim of this paper is to discuss a mathematical solution procedure to solve a Ramsay-type growth model that explains the fundamentals of consumption and capital accumula-tion in a dynamic equilibrium setting. The problem is formulated as a system of recursive equations and studied through some numerical experiments for the time path of the different variables of the model under some alternative assumption for the steady-state equilibrium of the labour market conditioning the possible singularity of the model.  相似文献   

13.
A lattice Boltzmann model for blood flows is proposed. The lattice Boltzmann Bi-viscosity constitutive relations and control dynamics equations of blood flow are presented. A non-equilibrium phase is added to the equilibrium distribution function in order to adjust the viscosity coefficient. By comparison with the rheology models, we find that the lattice Boltzmann Bi-viscosity model is more suitable to study blood flow problems. To demonstrate the potential of this approach and its suitability for the application, based on this validate model, as examples, the blood flow inside the stenotic artery is investigated.  相似文献   

14.
在非均匀道路条件下,推广了各向异性守恒高阶交通流模型(CHO模型),获得流通量间断CHO模型,并基于其Riemann不变量性质,运用局部简化方法及δ映射算法,设计了求解流通量间断CHO模型的一阶Godunov、EO(Engquist-Osher)和LF(Lax-Friedrichs)等数值格式.通过数值模拟表明流通量间断CHO模型是合理有效的,它可以描述平衡态和非平衡态交通流,相对于流通量间断LWR(Lighthill-Whitham-Richards)模型,其能更好地刻画实际交通现象.  相似文献   

15.
The critical dynamics of a spatially inhomogeneous system are analyzed with allowance for local nonequilibrium, which leads to a singular perturbation in the equations due to the appearance of a second time derivative. An extension is derived for the Eyre theorem, which holds for classical critical dynamics described by first-order equations in time and based on the local equilibrium hypothesis. It is shown that gradient-stable numerical algorithms can also be constructed for second-order equations in time by applying the decomposition of the free energy into expansive and contractive parts, which was suggested by Eyre for classical equations. These gradient-stable algorithms yield a monotonically nondecreasing free energy in simulations with an arbitrary time step. It is shown that the gradient stability conditions for the modified and classical equations of critical dynamics coincide in the case of a certain time approximation of the inertial dynamics relations introduced for describing local nonequilibrium. Model problems illustrating the extended Eyre theorem for critical dynamics problems are considered.  相似文献   

16.
本文主要研究基于时间敏感产品的多厂商供应链网络模型。在该模型中,每个厂商都希望自己的运营成本和时间消耗最少,但目标函数和约束条件都受到竞争对手决策的影响,因此属于广义纳什均衡问题的范畴。在过去的文献中,这类问题通常被转化成一般形式的变分不等式来处理。本文中,注意到模型中所涉及的约束函数都是线性函数,我们将问题转化成混合互补系统来求解。与一般形式的变分不等式问题相比,混合互补系统要容易处理得多。借助于所谓Fischer-Burmeister函数,我们将混合互补系统转化成非线性方程组,然后利用半光滑牛顿法进行求解。初步的数值实验表明,本文提出的方法是切实可行的。  相似文献   

17.
18.
This paper deals with the numerical computation of the boundary controls of linear, time-reversible, second-order evolution systems. Based on a method introduced by Russell ( Stud. Appl. Math. LII(3) (1973)) for the wave equation, a numerical algorithm is proposed for solving this type of problems. The convergence of the method is based on the local energy decay of the solution of a suitable Cauchy problem associated with the original control system. The method is illustrated with several numerical simulations for the Klein–Gordon and the Euler–Bernoulli equations in 1D, the wave equation on a rectangle, and the plate equation on a disk.  相似文献   

19.
The hyperbolic Eularian model is used as a mathematical framework for compressible multiphase flows. The formulation was obtained after an averaging process of the single phase Navier-Stokes equations. The closure of multi-component system leads to the volume fraction equation containing a non-conservative term and a pressure equilibrium condition. As a result the model equations cannot be written in a conservative form. To solve the equations a finite volume Godunov type computational approach is developed which uses an approximate Riemann solver combined with a numerical scheme to tackle the non-conservative terms. The approach accounts for pressure non-equilibrium. It enables resolving interfaces separating compressible fluids and captures the baroclinic source of vorticity generation. The computations are performed for various initial conditions and compared with theoretical and experimental data for a shock-bubble interaction problem. The investigated cases include acoustic wave transmission through isolated bubbles of helium and krypton. The numerical results illustrate the characteristic features of the evolving interfaces. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock and by the vorticity generation within the media. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Motivated by models from evolutionary population dynamics, we study a general class of nonlinear difference equations called matrix models. Under the assumption that the projection matrix is non-negative and irreducible, we prove a theorem that establishes the global existence of a continuum with positive equilibria that bifurcates from an extinction equilibrium at a value of a model parameter at which the extinction equilibrium destabilizes. We give criteria for the global shape of the continuum, including local direction of bifurcation and its relationship to the local stability of the bifurcating positive equilibria. We discuss a relationship between backward bifurcations and Allee effects. Illustrative examples are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号