首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
This paper considers a single machine scheduling problem. There are n jobs to be processed on a single machine. The problem is to minimize total earliness penalties subject to no tardy jobs. The problem is NP-complete if the due-dates are arbitrary. We study the problem when the due-dates are determined by the equal slack (SLK) method. Two special cases of the problem are solved in polynomial time. The first one is the problem with equally weighted monotonous penalty objective function. The second one is the problem with weighted linear penalty objective function.  相似文献   

2.
考虑了工件具有退化效应的两台机器流水作业可拒绝排序问题,其中工件的加工时间是其开工时间的简单线性增加函数.每个工件或者被接收,依次在两台流水作业机器上被加工,或者被拒绝但需要支付一个确定的费用.考虑的目标是被接收工件的最大完工时间加上被拒绝工件的总拒绝费用之和.证明了问题是NP-难的,并提出了一个动态规划算法.最后对一种特殊情况设计了多项式时间最优算法.  相似文献   

3.
We consider two linear project time–cost tradeoff problems with multiple milestones. Unless a milestone is completed on time, penalty costs for tardiness may be imposed. However, these penalty costs can be avoided by compressing the processing times of certain jobs that require additional resources or costs. Our model describes these penalty costs as the total weighted number of tardy milestone. The first problem tries to minimize the total weighted number of tardy milestones within the budget for total compression costs, while the second problem tries to minimize the total weighted number of tardy milestones plus total compression costs. We develop a linear programming formulation for the case with a fixed number of milestones. For the case with an arbitrary number of milestones, we show that under completely ordered jobs, the first problem is NP-hard in the ordinary sense while the second problem is polynomially solvable.  相似文献   

4.
In this paper, we address a two-machine flow shop scheduling problem under simple linear deterioration. By a simple linear deterioration function, we mean that the processing time of a job is a simple linear function of its execution start time. The objective is to find a sequence that minimizes total weighted completion time. Optimal schedules are obtained for some special cases. For the general case, several dominance properties and two lower bounds are derived to speed up the elimination process of a branch-and-bound algorithm. A heuristic algorithm is also proposed to overcome the inefficiency of the branch-and-bound algorithm. Computational analysis on randomly generated problems is conducted to evaluate the branch-and-bound algorithm and heuristic algorithm.  相似文献   

5.
In this paper problems of time-dependent scheduling on dedicated machines are considered. The processing time of each job is described by a function which is dependent on the starting time of the job. The objective is to minimise the maximum completion time (makespan). We prove that under linear deterioration the two-machine flow shop problem is strongly NP-hard and the two-machine open shop problem is ordinarily NP-hard. We show that for the three-machine flow shop and simple linear deterioration there does not exist a polynomial-time approximation algorithm with the worst case ratio bounded by a constant, unless P=NP. We also prove that the three-machine open shop problem with simple linear deterioration is ordinarily NP-hard, even if the jobs have got equal deterioration rates on the third machine.  相似文献   

6.
We study a problem of scheduling deteriorating jobs, i.e. jobs whose processing times are an increasing function of their starting times. We consider the case of a single machine and linear job-independent deterioration. The objective is to minimize the sum of weighted completion times, with weights proportional to the basic processing times. The optimal schedule is shown to be Λ-shaped, i.e. the sequence of the basic processing times has a single local maximum. Moreover, we show that the problem is solved in O(N log N) time. In the last section we test heuristics for the case of general weights.  相似文献   

7.
本文考虑具有学习效应和共同交货期的单机排序问题.目标函数是加权超前有奖延误受罚总和.我们的目标是寻找一个最优序使得目标函数的值最小.由于该问题是NP-hard的,我们给出一些特殊情况下多项式时间可解的特例.同时在快速估计下界的基础上给出了分支定界算法来求一般情况下的最有排序.  相似文献   

8.
We consider the problem of assigning a common due-date and sequencing a set of simultaneously available jobs on several identical parallel-machines. The objective is to minimize some penalty function of earliness, tardiness and due-date values. We show that the problem is NP-hard with either a total or a maximal penalty function. For the problem with a total penalty function, we show that the special case in which all jobs have an equal processing time is polynomially-solvable.  相似文献   

9.
《Optimization》2012,61(6):829-838
An exact penalty approach for solving minimization problems with a concave objective function, linear constraints and Boolean variables is proposed. The penalty problems have continuous variables. An estimation of the penalty parameter which guarantees the exactness can be calculated on the base of an auxiliary problem. The results are applied to problems with an arbitrary quadratic objective function, linear constraints and Boolean variables. This leads to a modified Lagrangean approach for the latter problems. In the general case, the penalty approach is compared with a direct application of results of global optimization to a modification of the initial problem.  相似文献   

10.
This paper studies a single machine scheduling problem to minimize the weighted number of early and tardy jobs with a common due window. There are n non-preemptive and simultaneously available jobs. Each job will incur an early (tardy) penalty if it is early (tardy) with respect to the common due window under a given schedule. The window size is a given parameter but the window location is a decision variable. The objective of the problem is to find a schedule that minimizes the weighted number of early and tardy jobs and the location penalty. We show that the problem is NP-complete in the ordinary sense and develop a dynamic programming based pseudo-polynomial algorithm. We conduct computational experiments, the results of which show that the performance of the dynamic algorithm is very good in terms of memory requirement and CPU time. We also provide polynomial time algorithms for two special cases.  相似文献   

11.
This paper studies single machine scheduling with a fixed non-availability interval. The processing time of a job is a linear increasing function of its starting time, and each job has a release date. A job is either rejected by paying a penalty cost or accepted and processed on the machine. The objective is to minimize the makespan of the accepted jobs and the total rejection penalties of the rejected jobs. We present a fully polynomial-time approximation scheme for the problem. We also show that the special case without non-availability interval can be solved using the same method with a lower order.  相似文献   

12.
具有学习效应的超前有奖延误受罚的排序问题(英文)   总被引:1,自引:0,他引:1  
本文考虑具有学习效应和共同交货期的单机排序问题.目标函数是加权超前有奖延误受罚总和.我们的目标是寻找一个最优序使得目标函数的值最小.由于该问题是NP-hard的,我们给出一些特殊情况下多项式时间可解的特例.同时在快速估计下界的基础上给出了分支定界算法来求一般情况下的最有排序.  相似文献   

13.
In this paper we consider a single-machine scheduling problem with simple linear deterioration. By simple linear deterioration, we mean that the processing time of a job is a simple linear function of its execution starting time and its deterioration rate. The objective is to find a schedule that minimizes total absolute differences in waiting times. We show that the optimal schedule is V-shaped: jobs are arranged in descending order of their deterioration rates if they are placed before the job with the smallest deterioration rate, but in ascending order of their deterioration rates if placed after it. We prove other several properties of an optimal schedule, and introduce two efficient heuristic algorithms that are tested against a lower bound. We also provide computational results to evaluate the performance of the heuristic algorithms.  相似文献   

14.
We study a single machine scheduling problem with partial rejection. Each job is with an integer processing time. Partial rejection occurs when a job is only partly processed with penalty for the rejected part. We focus on integer size rejection. The objective is to minimize the total weighted completion time of processed jobs plus the total rejection cost. We develop a polynomial time optimal algorithm to solve the problem. We also present an easy-to-implement pseudopolynomial time optimal algorithm.  相似文献   

15.
A new scheduling model in which both two-agent and increasing linear deterioration exist simultaneously is investigated in this paper. The processing time of a job is defined as an increasing linear function of its starting time. Two agents compete to perform their respective jobs on a common single machine and each agent has his own criterion to optimize. We introduce an increasing linear deterioration model into the two-agent single-machine scheduling, where the goal is to minimize the objective function of the first agent with the restriction that the objective function of the second agent cannot exceed a given upper bound. We study two scheduling problems with the different combinations of two agents’ objective functions: makespan, maximum lateness, maximum cost and total completion time. We propose the optimal properties and present the optimal polynomial time algorithms to solve the scheduling problems, respectively.  相似文献   

16.
In this paper, we consider the single machine scheduling problems with an actual time-dependent deterioration effect. By the actual time-dependent deterioration effect, we mean that the processing time of a job is defined by increasing function of total actual processing time of jobs in front of it in the sequence. We show that even with the introduction of an actual time-dependent deterioration to job processing times, makespan minimization problem, total completion time minimization problem, the total lateness, and the sum of the quadratic job completion times minimization problem remain polynomially solvable, respectively. We also show that the total weighted completion time minimization problem, the discounted total weighted completion time minimization problem, the maximum lateness minimization problem, and the total tardiness minimization problem can be solved in polynomial time under certain conditions.  相似文献   

17.
针对具有退化工件的排序模型,考虑了单机排序和两台机器流水作业的工期窗口安排问题,在这一模型中,工件的加工时间是与其开工时间和退化率有关的一个线性函数。目标是找到一个最优排序和确定工期窗口的开始时间及大小以便最小化所有工件的费用函数,费用函数由四部分组成:提前、延误、工期窗口开始时间和工期窗口大小。对所研究的单机问题,详细地讨论了符合现实情况的几种类型问题,并得到了问题的最优解;对两台机器流水作业问题,给出了多项式算法。  相似文献   

18.
We present a new algorithm for solving a linear least squares problem with linear constraints. These are equality constraint equations and nonnegativity constraints on selected variables. This problem, while appearing to be quite special, is the core problem arising in the solution of the general linearly constrained linear least squares problem. The reduction process of the general problem to the core problem can be done in many ways. We discuss three such techniques.The method employed for solving the core problem is based on combining the equality constraints with differentially weighted least squares equations to form an augmented least squares system. This weighted least squares system, which is equivalent to a penalty function method, is solved with nonnegativity constraints on selected variables.Three types of examples are presented that illustrate applications of the algorithm. The first is rank deficient, constrained least squares curve fitting. The second is concerned with solving linear systems of algebraic equations with Hilbert matrices and bounds on the variables. The third illustrates a constrained curve fitting problem with inconsistent inequality constraints.  相似文献   

19.
考虑带有退化效应和序列相关运输时间的单机排序问题. 工件的加工时间是其开工时间的简单线性增加函数. 当机器单个加工工件时, 极小化最大完工时间、(加权)总完工时间和总延迟问题被证明是多项式可解的, EDD序对于极小化最大延迟问题不是最优排序, 另外, 就交货期和退化率一致情形给出了一最优算法. 当机器可分批加工工件时, 分别就极小化最大完工时间和加权总完工时间问题提出了多项式时间最优算法.  相似文献   

20.
刘德峰 《数学季刊》2001,16(3):34-41
在本文中,我们研究斯坦伯格问题,发展了罚函数法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号