首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper analyzes the double Neimark–Sacker bifurcation occurring in a two-DoF system, subject to PD digital position control. In the model the control force is considered piecewise constant. Introducing a nonlinearity related to the saturation of the control force, the bifurcations occurring in the system are analyzed. The system is generally losing stability through Neimark–Sacker bifurcations, with relatively simple dynamics. However, the interaction of two different Neimark–Sacker bifurcations steers the system to much more complicated behavior. Our analysis is carried out using the method proposed by Kuznetsov and Meijer. It consists of reducing the dynamics of the nonlinear map to its local center manifold, eliminating the non-internally resonant nonlinear terms and transforming the nonlinear map to an amplitude map, that describes the local dynamics of the system. The analysis of this amplitude map allows us to define regions, in the space of the control gains, with a close interaction of the two bifurcations, which generates unstable quasiperiodic motion on a 3-torus, coexisting with two stable 2-torus quasiperiodic motions. Other regions in the space of the control gains show the coexistence of 2-torus quasiperiodic solutions, one stable and the other unstable. All the results described in this work are analytical and obtained in closed form, numerical simulations illustrate and confirm the analytical results.  相似文献   

2.
The emergence of multistability in a simple three-dimensional autonomous oscillator is investigated using numerical simulations, calculations of Lyapunov exponents and bifurcation analysis over a broad area of two-dimensional plane of control parameters. Using Neimark–Sacker bifurcation of 1:1 limit cycle as the starting regime, many parameter islands with the coexisting attractors were detected in the phase diagram, including the coexistence of torus, resonant limit cycles and chaos; and transitions between the regimes were considered in detail. The overlapping between resonant limit cycles of different winding numbers, torus and chaos forms the multistability.  相似文献   

3.
In this paper, a nonlinear quadropoly game based on Cournot model with fully heterogeneous players is established. This game extends the model introduced by Tramontana and Elsadany (Nonlinear Dyn 68:187–193, 2012) who considered a heterogeneous triopoly game with an isoelastic demand function. Here, four different types of players and potentially different marginal costs are considered. Moreover, the assumption of an isoelastic demand function increases the nonlinearity of the final four-dimensional map. The stability of the resulting discrete-time dynamical system is analyzed. The existence of Neimark–Sacker bifurcation near the Nash equilibrium point of the game is shown. Also, based on the Kuznetsov’s normal form technique for discrete-time system, the stability of the Neimark–Sacker bifurcation is also discussed which indicates that the bifurcation is supercritical. Moreover, it is shown that the Nash equilibrium point of the game undergoes period-doubling (flip) bifurcation. Furthermore, the double route to chaotic dynamics in this model, via flip bifurcations and via Neimark–Sacker bifurcation of the Nash equilibrium point, is illustrated. Coexistence of multi-chaotic attractors of the model is illustrated. Simulation tools like bifurcation diagrams, stability regions of parameters, Lyapunov exponent spectrum, phase plots and basins of attraction are used to verify the complex dynamics of the game.  相似文献   

4.
Cheng  Lifang  Wei  Xiukun  Cao  Hongjun 《Nonlinear dynamics》2018,93(4):2415-2431

The effect of the nonlinear terms on bifurcation behaviors of limit cycles of a simplified railway wheelset model is investigated. At first, the stable equilibrium state loses its stability via a Hopf bifurcation. The bifurcation curve is divided into a supercritical branch and a subcritical one by a generalized Hopf point, which plays a key role in determining the occurrence of flange contact and derailment of high-speed railway vehicles, and the occurrence of this critical situation is an important decision-making criteria for design parameters. Secondly, bifurcations of limit cycles are discussed by comparing the bifurcation behavior of cycles for two different nonlinear parameters. Unlike local Hopf bifurcation analysis based on a single bifurcation parameter in most papers, global bifurcation analysis of limit cycles based on two bifurcation parameters is investigated, simultaneously. It is shown that changing nonlinear parameter terms can affect bifurcation types of cycles and division of parameter domains. In particular, near the branch points of cycles, two symmetrical limit cycles are created by a pitchfork bifurcation and then two symmetrical cycles both undergo a period-doubling bifurcation to form two stable period-two cycles. Around the resonant points, period orbits can make several turns, whose number of turns corresponds to the ratio of resonance. Thirdly, near the Neimark–Sacker bifurcation of cycles, a stable torus is created by a supercritical Neimark–Sacker bifurcation, which shows that the orbit of the model exhibits modulated oscillations with two frequencies near the limit cycle. These results demonstrate that nonlinear parameter terms can produce very complex global bifurcation phenomena and make obvious effects on possible hunting motions even though a simple railway wheelset model is concerned.

  相似文献   

5.
In this paper, a discrete-time predator–prey model with Crowley–Martin functional response is investigated based on the center manifold theorem and bifurcation theory. It is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation. An explicit approximate expression of the invariant curve, caused by Neimark–Sacker bifurcation, is given. The fractal dimension of a strange attractor and Feigenbaum’s constant of the model are calculated. Moreover, numerical simulations using AUTO and MATLAB are presented to support theoretical results, such as a cascade of period doubling with period-2, 4, 6, 8, 16, 32 orbits, period-10, 20, 19, 38 orbits, invariant curves, codimension-2 bifurcation and chaotic attractor. Chaos in the sense of Marotto is also proved by both analytical and numerical methods. Analyses are displayed to illustrate the effect of magnitude of interference among predators on dynamic behaviors of this model. Further the chaotic orbit is controlled to be a fixed point by using feedback control method.  相似文献   

6.
In this paper, the dynamics of a two-dimensional discrete Hindmarsh–Rose model is discussed. It is shown that the system undergoes flip bifurcation, Neimark–Sacker bifurcation, and 1:1 resonance by using a center manifold theorem and bifurcation theory. Furthermore, we present the numerical simulations not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, including orbits of period 3, 6, 15, cascades of period-doubling bifurcation in orbits of period 2, 4, 8, 16, quasiperiodic orbits, and chaotic sets. These results obtained in this paper show far richer dynamics of the discrete Hindmarsh–Rose model compared with the corresponding continuous model.  相似文献   

7.
In this paper, we discuss the qualitative behavior of a four-dimensional discrete-time predator–prey model with parasites. We investigate existence and uniqueness of positive steady state and find parametric conditions for local asymptotic stability of positive equilibrium point of given system. It is also proved that the system undergoes Neimark–Sacker bifurcation (NSB) at positive equilibrium point with the help of an explicit criterion for NSB. The system shows chaotic dynamics at increasing values of bifurcation parameter. Chaos control is also discussed through implementation of hybrid control strategy, which is based on feedback control methodology and parameter perturbation. Finally, numerical simulations are conducted to illustrate theoretical results.  相似文献   

8.
Hysteresis phenomena and multistability play crucial roles in the dynamics of coupled oscillators, which are now interpreted from the point of view of codimension-two bifurcations. On the Ott–Antonsen’s manifold, two-parameter bifurcation sets of delay-coupled Kuramoto model are derived regarding coupling strength and delay as bifurcation parameters. It is rigorously proved that the system must undergo Bautin bifurcations for some critical values; thus, there always exists saddle-node bifurcation of periodic solutions inducing hysteresis loop. With the aid of center manifold reduction method and the MATLAB package DDE-BIFTOOL, the location of Bautin and double Hopf points and detailed dynamics are theoretically determined. We find that, near these critical points, four coherent states (two of which are stable) and a stable incoherent state may coexist and that the system undergoes Neimark–Sacker bifurcation of periodic solutions. Finally, the clear scenarios about the synchronous transition in delayed Kuramoto model are depicted.  相似文献   

9.
The paper analyzes the stability and bifurcations of a discrete singular bioeconomic system in the closed first quadrant $R_{+}^{3}$ . First, applying the Poincaré scheme to a differential-algebraic predator–prey system where the economic interest of harvesting is taken into account, a discrete singular bioeconomic system is proposed. Then, local stability and the existing conditions of the flip bifurcation and Neimark–Sacker bifurcation around the interior equilibria of the proposed model are discussed by using the normal form of the discrete singular bioeconomic system, the center manifold theorem and the bifurcation theory, when choosing the step size δ as the parameter of the bifurcation. Finally, the results are illustrated and the complex dynamical behaviors are exhibited by computer numerical simulations.  相似文献   

10.
The dynamics of a discrete-time Ricardo–Malthus model obtained by numerical discretization is investigated, where the step size δ is regarded as a bifurcation parameter. It is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation in the interior of $R^{2}_{+}$ by using the theory of center manifold and normal form. Numerical simulations are presented not only to illustrate our theoretical results, but also to exhibit the system’s complex dynamical behavior, such as the cascade of period-doubling bifurcation in orbits of period 2, 4, 8 16, period-11, 22, 28 orbits, quasiperiodic orbits, and the chaotic sets. These results reveal far richer dynamics of the discrete model compared with the continuous model. The Lyapunov exponents are numerically computed to confirm further the complexity of the dynamical behaviors.  相似文献   

11.
A single degree-of-freedom nonlinear mechanical model of the stick–slip phenomenon is studied when the Stribeck-type friction force is emulated by means of a digitally controlled actuator. The relative velocity of the slipping contact surfaces is considered as bifurcation parameter. The original physical system presents subcritical Hopf bifurcation with a wide bistable parameter region where stick–slip and steady-state slipping are both stable locally. Hardware-in-the-loop experiments are performed with a physical oscillatory system subjected to the emulated Stribeck forces. The effect of sampling time is studied with respect to the stability and nonlinear behavior of this experimental system. The existence of subcritical Neimark–Sacker bifurcations are proven in the digital system, the stability and bifurcation characteristics of the continuous and the digital systems are compared, and the counter-intuitive stabilizing effect of sampling time is shown both analytically and experimentally. The conclusions draw the attention to the limitations of hardware-in-the-loop experiments when the corresponding systems are strongly nonlinear.  相似文献   

12.
Bonny  Talal  Elwakil  Ahmed S. 《Nonlinear dynamics》2018,91(2):819-835
In this paper, a two-stage oligopoly game of semi-collusion in production is analyzed and expounded, where at first stage all firms compete in R&D and at second stage all firms coordinate the production activities in order to make their joint profit maximized. Not only the local stability of equilibriums, but also the existence, stability and direction of flip bifurcation of the discrete nonlinear model are investigated by using the normal form method and the center manifold theory. Then, the validity of the theoretical analysis is justified through numerical simulation. We find that the model we built can exhibit very complex dynamical behaviors, but it cannot undergo the Neimark–Sacker bifurcation. Also the coexistence of attractors is found through numerical simulation, and their basins of attraction are simulated. At last of this paper, the chaotic motion of the proposed model is controlled by delayed feedback control method.  相似文献   

13.

The regular and chaotic vibrations of a nonlinear structure subjected to self-, parametric, and external excitations acting simultaneously are analysed in this study. Moreover, a time delay input is added to the model to control the system response. The frequency-locking phenomenon and transition to quasi-periodic oscillations via Hopf bifurcation of the second kind (Neimark–Sacker bifurcation) are determined analytically by the multiple time scales method up to the second-order perturbation. Approximate solutions of the quasi-periodic motion are determined by a second application of the multiple time scales method for the slow flow, and then, slow–slow motion is obtained. The similarities and differences between the van der Pol and Rayleigh models are demonstrated for regular, periodic, and quasi-periodic oscillations, as well as for chaotic oscillations. The control of the structural response, and modifications of the resonance curves and bifurcation points by the time delay signal are presented for selected cases.

  相似文献   

14.
Ge  Penghe  Wei  Xiukun  Liu  Jinzhao  Cao  Hongjun 《Nonlinear dynamics》2020,102(1):79-100

This paper presents the bifurcation behaviors of a modified railway wheelset model to explore its instability mechanisms of hunting motion. Equivalent conicity data measured from China high-speed railway vehicle are used to modify the wheelset model. Firstly, the relationships between longitudinal stiffness, lateral stiffness, equivalent conicity and critical speed are taken into account by calculating the real parts of the eigenvalues of the Jacobian matrix and Hurwitz criterion for the corresponding linear model. Secondly, measured equivalent conicity data are fitted by a nonlinear function of the lateral displacement rather than are considered as a constant as usual. Nonlinear wheel–rail force function is used to describe the wheel–rail contact force. Based on these modifications, a modified railway wheelset model with nonlinear equivalent conicity and wheel–rail force is set up, and then, some instability mechanisms of China high-speed train vehicle are investigated based on Hopf bifurcation, fold (limit point) bifurcation of cycles, cusp bifurcation of cycles, Neimark–Sacker bifurcation of cycles and 1:1 resonance. In particular, fold bifurcation of cycles can produce a vast effect on the hunting motion of the modified wheelset model. One of the main reasons leading to hunting motion is due to the fold bifurcation structure of cycles, in which stable limit cycles and unstable limit cycles may coincide, and multiple nested limit cycles appear on a side of fold bifurcation curve of cycles. Unstable hunting motion mainly depends on the coexistence of equilibria and limit cycles and their positions; if the most outward limit cycle is stable, then the motion of high-speed vehicle should be safe in a reasonable range. Otherwise, if the initial values are chosen near the most outward unstable limit cycle or the system is perturbed by noises, the high-speed vehicle will take place unstable hunting motion and even lead to serious train derailment events. Therefore, in order to control hunting motions, it may be the easiest way in theory to guarantee the coexistence of the inner stable equilibrium and the most outward stable limit cycle in a wheelset system.

  相似文献   

15.
非自治时滞反馈控制系统的周期解分岔和混沌   总被引:9,自引:0,他引:9  
徐鉴  陆启韶 《力学学报》2003,35(4):443-451
研究时滞反馈控制对具有周期外激励非线性系统复杂性的影响机理,研究对应的线性平衡态失稳的临界边界,将时滞非线性控制方程化为泛函微分方程,给出由Hopf分岔产生的周期解的解析形式.通过分析周期解的稳定性得到周期解的失稳区域,使用数值分析观察到时滞在该区域可以导致系统出现倍周期运动、锁相运动、概周期运动和混沌运动以及两条通向混沌的道路:倍周期分岔和环面破裂.其结果表明,时滞在控制系统中可以作为控制和产生系统的复杂运动的控制“开关”.  相似文献   

16.
In this paper, we give a detailed study of the stable region in discrete-time FitzHugh–Nagumo delayed excitable Systems, which can be divided into two parts: one is independent of delay and the other is dependent on delay. Two different new states are to be observed, which are new steady states (equilibria-the excitable FitzHugh–Nagumo) or limit cycles/higher periodic orbits (the FitzHugh–Nagumo oscillators) as the origin loses its stability, and usually, one is synchronized and the other asynchronized. We also find out that there exist critical curves through which there occur fold bifurcations, flip bifurcations, Neimark–Sacker bifurcations and even higher-codimensional bifurcations etc. It is also shown that delay can play an important role in rich dynamics, such as the occurrence of chaos or not, by means of Lyapunov exponents, Lyapunov dimensions, and the sensitivity to the initial conditions. Multistability phenomena are also discussed including the coexistence of synchronized and asynchronized oscillators, or synchronized/asynchronized oscillators and multiple stable nontrivial equilibria etc.  相似文献   

17.
The motion of the moonlet Dactyl in the binary system 243 Ida is investigated in this paper. First, periodic orbits in the vicinity of the primary are calculated, including the orbits around the equilibrium points and large-scale orbits. The Floquet multipliers' topological cases of periodic orbits are calculated to study the orbits' stabilities. During the continuation of the retrograde near-circular orbits near the equatorial plane, two period-doubling bifurcations and one Neimark–Sacker bifurcation occur one by one, leading to two stable regions and two unstable regions. Bifurcations occur at the boundaries of these regions. Periodic orbits in the stable regions are all stable, but in the unstable regions are all unstable. Moreover, many quasi-periodic orbits exist near the equatorial plane. Long-term integration indicates that a particle in a quasi-periodic orbit runs in a space like a tire. Quasi-periodic orbits in different regions have different styles of motion indicated by the Poincare sections. There is the possibility that moonlet Dactyl is in a quasi-periodic orbit near the stable region I, which is enlightening for the stability of the binary system.  相似文献   

18.
Codimension two bifurcation of a vibro-bounce system   总被引:1,自引:0,他引:1  
A three-degree-of-freedom vibro-bounce system is considered. The disturbed map of period one single-impact motion is derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a three-dimensional one, and the normal form map associated with Hopf-flip bifurcation is obtained. Dynamical behavior of the system, near the point of codimension two bifurcation, is investigated by using qualitative analysis and numerical simulation. It is found that near the point of Hopf-flip bifurcation there exists not only Hopf bifurcation of period one single-impact motion, but also Hopf bifurcation of period two double-impact motion. The results from simulation show that there exists an interesting torus doubling bifurcation near the codimension two bifurcation. The torus doubling bifurcation makes the quasi-periodic attractor associated with period one single-impact motion transform to the other quasi-periodic attractor represented by two attracting closed circles. The torus bifurcation is qualitatively different from the typical torus doubling bifurcation occurring in the vibro-impact systems. Different routes from period one single-impact motion to chaos are observed by numerical simulation.The project supported by the National Natural Science Foundation of China (10172042, 50475109) and the Natural Science Foundation of Gansu Province Government of China (ZS-031-A25-007-Z (key item))  相似文献   

19.
X. Xu  Z. H. Wang 《Nonlinear dynamics》2009,56(1-2):127-144
This paper presents a detailed analysis on the dynamics of a ring network with small world connection. On the basis of Lyapunov stability approach, the asymptotic stability of the trivial equilibrium is first investigated and the delay-dependent criteria ensuring global stability are obtained. The existence of Hopf bifurcation and the stability of periodic solutions bifurcating from the trivial equilibrium are then analyzed. Further studies are paid to the effects of small world connection on the stability interval and the stability of periodic solution. In particular, some complex dynamical phenomena due to short-cut strength are observed numerically, such as: period-doubling bifurcation and torus breaking to chaos, the coexistence of multiple periodic solutions, multiple quasi-periodic solutions, and multiple chaotic attractors. The studies show that small world connection may be used as a simple but efficient “switch” to control the dynamics of a system.  相似文献   

20.
In this paper, we analyze a triopolistic market with heterogeneous firms when the demand function is isoelastic. We consider the same heterogeneous firms as Elabbasy et al. (Comput. Math. Appl. 57:488?C499, 2009) introducing a nonlinearity in the demand function instead of the cost function. Stability conditions of the two equilibrium points and complex dynamics are studied. The main novelty consists of the double route to chaos, via period-doubling bifurcations and via Neimark?CSacker bifurcation. The two routes have important differences from the economic point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号