首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report an experimental study of ignition of flammable mixtures by highly unexpanded, supersonic hot jets. The high-pressure, hot-gas reservoir supplying the jet is created by impacting a projectile on a plunger to rapidly compress and ignite a rich n-hexane/air mixture, resulting in a peak reservoir pressure of more than 20 MPa. A locking mechanism was used to prevent the plunger from rebounding and the jet was created by rupturing a diaphragm covering a nozzle with an exit diameter between 0.25 and 1 mm. The jet development and ignition processes in the main chamber filled with hexane-air mixture were visualized using high-speed schlieren and OH* chemiluminescence imaging. The ignition threshold was determined as a function of composition in the jet and main chamber, the nozzle diameter, and the initial pressure in the main chamber. Unlike the case of subsonic jets in which ignition occurs at the shear layer near the nozzle exit, ignition of combustion in the main chamber was found to take place downstream of the Mach disk terminating the supersonic expansion and within the turbulent mixing region created by the startup of the supersonic jet. The results are interpreted using a constant-pressure, well-stirred reactor model simulating the mixing between the hot jet and cold ambient gas. The critical conditions for ignition are determined by the competition between energy release due to chemical reactions initiated by the hot jet gas and cooling due to mixing with the cold chamber atmosphere. The critical value (maximum for which ignition occurs) of the mixing rate was computed using a detailed chemical reaction model and found to be a useful qualitative guide to our observations.  相似文献   

2.
超音速等离子体点火过程的三维数值模拟   总被引:6,自引:0,他引:6       下载免费PDF全文
为了研究等离子体点燃超音速混合气流的过程,设计并验证了超音速燃烧室的三维计算模型,计算出了燃烧室等离子体点火时的流场参数和化学反应规律,分析了等离子体点火对燃烧室内燃烧的影响。计算结果表明:高温等离子体射流的滞止作用通过增加混合气在燃烧室内的停留时间提高了点火效率; 等离子体点火时燃烧区域的压力扩散比较充分,内部为压力相对平衡的低速流动; 高温等离子体射流高速射向混合气流时产生的速度矢量偏移扩大了点火面积,从而使点火效率得到提高; 氢气、空气燃烧的燃烧产物主要是水,燃烧区域局部温度主要受局部放热反应的影响。  相似文献   

3.
Litvinenko  Yu. A.  Grek  G. R.  Kozlov  V. V.  Litvinenko  M. V.  Shmakov  A. G. 《Doklady Physics》2020,65(9):312-316
Doklady Physics - The experimental research results on diffusion combustion of a round hydrogen microjet flowing from a slit micronozzle at subsonic and supersonic speeds are presented. For the...  相似文献   

4.
Kozlov  V. V.  Grek  G. R.  Litvinenko  Yu. A.  Shmakov  A. G.  Vikhorev  V. V. 《Doklady Physics》2019,64(3):134-138
Doklady Physics - In this paper, we presented the results of experimental studies of the diffusion combustion of a plain hydrogen microjet flowing from a slit micronozzle at subsonic and supersonic...  相似文献   

5.
This study is devoted to experimental investigation of hydrogen-combustion modes and the structure of a diffusion flame formed at a high-velocity efflux of hydrogen in air through round apertures of various diameters. The efflux-velocity range of the hydrogen jet and the diameters of nozzle apertures at which the flame is divided in two zones with laminar and turbulent flow are found. The zone with the laminar flow is a stabilizer of combustion of the flame as a whole, and in the zone with the turbulent flow the intense mixing of fuel with an oxidizer takes place. Combustion in these two zones can occur independently from each other, but the steadiest mode is observed only at the existence of the flame in the laminar-flow zone. The knowledge obtained makes it possible to understand more deeply the features of modes of microjet combustion of hydrogen promising for various combustion devices.  相似文献   

6.
Ignition and unburned hydrogen escaping from hydrogen jet diffusion flames diluted with nitrogen up to 70% were experimentally studied. The successful ignition locations were about 2/3 of the flame length above the jet exit for undiluted flames and moved much closer to the exit for diluted flames. For higher levels of dilution or higher flow rates, there existed a region within which a diluted hydrogen diffusion flame can be ignited and burns with a stable liftoff height. This is contrary to previous findings that pure and diluted hydrogen jet diffusion cannot achieve a stable lifted flame configuration. With liftoff, the flame is noisy and short with significant amount of unburned hydrogen escaping into the product gases. If ignition is initiated below this region, the flame propagates upstream quickly and attaches to the burner rim. Results from measurements of unburned hydrogen in the combustion products showed that the amount of unburned hydrogen increased as the nitrogen dilution level was increased. Thus, hydrogen diffusion flame diluted with nitrogen cannot burn completely.  相似文献   

7.
Basic methods for obtaining laser jet thrust in the supersonic regime corresponding to the supersonic flow in the jet nozzle are analyzed. It is shown that the method based on the interaction of a laser ablative jet with the supersonic flow is promising. In this case, laser thrust is formed due to additional acceleration of the flow behind the ablation region. Numerical simulation of the flow in a parabolic nozzle is employed to demonstrate the possibility of effective formation of laser thrust at a level of 3 × 10?3 N/W.  相似文献   

8.
Characteristics and structure of inverse flames of natural gas   总被引:2,自引:0,他引:2  
Characteristics and structure of nominally non-premixed flames of natural gas are investigated using a burner that employs simultaneously two distinct features: fuel and oxidiser direct injection, and inverse fuel and oxidiser delivery. At low exit velocities, the result is an inverse diffusion flame that has been noted in the past for its low NOx emissions, soot luminosity, and narrow stability limits. The present study aimed at extending the burner operating range, and it demonstrated that the inverse flame exhibits a varying degree of partial premixing dependent on the discharge nozzle conditions and the ratio of inner air jet and outer fuel jet velocities. These two variables affect the flame length, temperature distributions, and stability limits. Temperature measurements and Schlieren visualisation show areas of enhanced turbulent mixing in the shear region and the presence of a well-mixed reaction zone on the flame centreline. This reaction zone is enveloped by an outer diffusion flame, yielding a unique double-flame structure. As the fuel–air equivalence ratio is decreasing with an increase in the inner jet velocity, the well-mixed reaction zone extends considerably. These findings suggest a method for establishing a flame of uniform high temperature by optimising the coaxial nozzle geometry and flow conditions. The normalised flame length is decreasing exponentially with the air/fuel velocity ratio. Measurements demonstrate that the inverse flame stability limits change qualitatively with varying degree of partial premixing. At the low premixing level, the flame blow-out is a function of the inner and outer jet velocities and the nozzle conditions. The flame blow-out at high degree of partial premixing occurs abruptly at a single value of the inner air jet velocity, regardless of the fuel jet velocity and almost independent of the discharge nozzle conditions.  相似文献   

9.
Experimental and numerical investigations of the ignition of hydrogen/air mixtures by jets of hot exhaust gases are reported. An experimental realisation of such an ignition process, where a jet of hot exhaust gas impinges through a narrow nozzle into a quiescent hydrogen/air mixture, possibly initiating ignition and combustion, is studied. High-speed laser-induced fluorescence (LIF) image sequences of the hydroxyl radical (OH) and laser Schlieren methods are used to gain information about the spatial and temporal evolution of the ignition process. Recording temporally resolved pressure traces yields information about ambient conditions for the process. Numerical experiments are performed that allow linking these observables to certain characteristic states of the gas mixture. The outcome of numerical modelling and experiments indicates the important influence of the hot jet temperature and speed of mixing between the hot and cold gases on the ignition process. The results show the quenching of the flame inside the nozzle and the subsequent ignition of the mixture by the hot exhaust jet. These detailed examinations of the ignition process improve the knowledge concerning flame transmission out of electrical equipment of the type of protection flameproof enclosure.  相似文献   

10.
An experimental study was performed on the combustion characteristics of a jet diffusion flame of Mg vapor injected through a small nozzle into CO2 atmospheres at low pressures from 8 to 48 kPa with a view to using Mg as fuel for a CO2-breathing turbojet engine in the Mars atmosphere. The Mg vapor jet produced three types of the flame. At lower pressures and higher injection velocities, a red-heated jet flame formed, in which the injected Mg vapor was heated by spontaneous reactions, turning red. At medium pressures and injection velocities, a stable luminous lifted-like flame developed above the rim of the chimney, a tube-like combustion product for the Mg vapor passage that grew on the nozzle during combustion. The flame had similar flame length properties to laminar jet diffusion flames of gaseous fuels. At higher pressures and lower injection velocities, a stable luminous attached flame developed at the rim of the chimney. The same reactions, producing MgO(g), CO and MgO(c), proceeded preferentially for all flames and chimneys. Carbon was only subordinately generated. Burning behavior of Mg vapor jets in a CO2 atmosphere has been represented, including the homogeneous reaction of Mg vapor with CO2, the diffusion of CO2, and the condensation and deposit of MgO. The injection velocity of Mg vapor at the rim of the chimney and the exothermic reactions with diffused CO2 that occur there play a crucial role in the attachment and development of the flames. The flame structure may be explained in terms of the relatively low gas-phase reaction rate of Mg with CO2.  相似文献   

11.
Data are presented from experiments on the ignition of a pulsed, triggered microwave streamer discharge at the focus of a cm-band TEM wave in an immersed supersonic air jet. It is shown experimentally that for velocities of the air in the jet up to 500 m/s, the structure of the discharge remains qualitatively unchanged and retains its streamer character. The finite size of the transverse cross section of the jet determines some features of the discharge. Zh. Tekh. Fiz. 69, 14–18 (November 1999)  相似文献   

12.
Combustion characteristics in a supersonic combustor with hydrogen injection upstream of a cavity flameholder were investigated both experimentally and numerically. The combustion was observed to be stabilized in the cavity mode around the shear layer via a dynamic balance and then spread into the main stream in the region around the jet centerplane where the flow was decelerated and turned to the main stream, supplying a favorable condition for the combustion to spread. The combustion spreading from the cavity shear layer to the main stream seemed to be dominated not only by the traditional diffusion process but also by the convection process associated with the extended recirculation flows resulting from the heat release and the interaction between the jet and the cavity shear layer. Therefore, the cavity-stabilized combustion appeared to be a strongly coupled process of flow and heat release around the cavity flameholder.  相似文献   

13.
Numerical simulation is carried out for combustion and detonation waves propagating through a motionless gas mixture in a porous inert charge. Computations are performed in a one-dimensional approximation by means of an EFAE computer program that was developed in the framework of the mechanics of multiphase reaction mediums. The chemical conversion of gas is modeled by a one-stage reaction of the Arrhenius type with constants selected based on existing experimental data on the ignition lags behind the reflected shock waves. Computations are performed for hydrogen-air mixtures with 35 and 15% hydrogen and compared with literature experimental data in which the initial pressure and the diameter of charged particles are varied. All three combustion modes (slow, fast, and supersonic) observed in the experiment and combustion failure under conditions lower than threshold are followed by numerical simulation. In addition, the computations qualitatively reproduced experimental data on the change of the combustion mode in the case of transfer from stoichiometric to a lean mixture and data on the combustion wave velocity and limiting conditions of combustion mode transition and failure of flame as a function of the initial pressure and the charged particle size. It is shown that supersonic waves propagating with a velocity of lower than 1100 m/s do not have a Chapman-Jouguet surface in the end of the reaction zone and it is evident that they can be related to detonation, as in the cited literature.  相似文献   

14.
Condensation of a 5% SiH4 + 95% Ar mixture in pulsed supersonic jets was studied. The sequence of process steps was determined from time characteristics of the jet that were recorded by pulse molecular-beam mass spectrometry. It is shown that pulsed jet condensation of the silane-argon mixture causes selective heating of the components, the heating process being dependent on the density of the mixture in the settling chamber of a nozzle.  相似文献   

15.
矩形喷口欠膨胀超声速射流对撞的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
张强  陈鑫  何立明  荣康 《物理学报》2013,62(8):84706-084706
在不同喷口间距和射流压力下开展了矩形喷口欠膨胀超声速射流对撞实验并与自由射流进行了对比. 实验表明:超声速射流对撞的辐射噪声中存在四种不同的啸音模式, 且随喷口距离和射流压力的变化在不同模式间切换. 在射流压力大于0.5 MPa且喷口间距小于50 mm时, 射流对撞面在两个喷口外形成两道正激波之间, 啸音基频维持在3 kHz左右. 随喷口间距的增大或射流压力的降低, 射流对撞面在一侧喷口外的弓形激波与另一侧喷口外的正激波之间. 对撞面也有可能出现在两个弓形激波之间, 对应的啸音基频约为9 kHz, 但容易受扰动而回到喷口一侧或是在喷口之间大幅度振荡. 当射流压力小于0.36 MPa且喷口间距大于70 mm后, 对撞面在两个喷口之间大幅度振荡, 产生基频在1 kHz左右并随射流压力的降低和喷口间距的增大而降低的啸音. 关键词: 超声速射流 啸音 射流对撞 激波  相似文献   

16.
介绍了描述大气压下超音速等离子体炬内等离子体特性的磁流体力学模型,在二维近似下,对会聚-扩展型喷口等离子体炬进行了数值模拟,获得了等离子体炬内等离子体速度、温度、压力以及马赫数的分布.结果表明超音速等离子体炬内的流场特性可以分为亚音速、跨音速和超音速三个明显的区域. 关键词: 等离子体炬 磁流体力学 数值模拟  相似文献   

17.
采用流体力学模拟方法,建立了垂直非淹没射流的计算流体动力学模型,研究了在紫外光诱导纳米颗粒胶体射流中用直径D为500μm的微孔光-液耦合喷嘴进行抛光加工的冲击动力学,分析了非淹没射流条件下光-液耦合喷嘴内、外的流场分布情况及其对工件表面的喷射冲击特征,对紫外光诱导纳米颗粒胶体射流冲击动力学过程进行了理论描述。计算结果表明,在1MPa入射压力时,微孔光-液耦合喷嘴口TiO2胶体的喷射速度约为30m/s,其集束匀速喷射距离约为5mm。在此喷射距离时进行垂直喷射,在胶束与工件表面的冲击射流作用区域,其射流静压最大值分布在射流冲击作用中心,但射流动压及射流合成速度在此区域的截面分布呈"W"形状,射流动压及速度最大值出现在胶体射流束的外环直径约2mm处。  相似文献   

18.
对不同进口条件下的超燃冲压发动机燃烧室内氢气喷流超声速燃烧流动特性进行了数值模拟与分析.宽范围超燃冲压发动机是吸气式高超声速飞行器推进系统设计中的热点问题之一,受实验设备硬件条件及实验技术限制,数值模拟技术仍然是超燃冲压发动机燃烧室内燃气燃烧特性及流场特性的主要研究手段.采用基于混合网格技术的多组元N-S方程有限体积方法求解器,在不同进口Mach数及压强条件下,对带楔板/凹腔结构的燃烧室模型氢气喷流燃烧流场进行了数值模拟,对比分析了氢气喷流穿透深度、喷口前后回流区结构、掺混效率及燃烧效率等流场结构与典型流场参数的变化特性及影响规律.研究成果可为宽范围超燃冲压发动机喷流燃烧流动特性分析提供参考.   相似文献   

19.
陈力  杨富荣  苏铁  鲍伟义  闫博  陈爽  李仁兵 《中国物理 B》2017,26(2):25205-025205
Interferometric Rayleigh scattering diagnostic technique for the time-resolved measurement of flow velocity is studied. Theoretically, this systematic velocity-measured accuracy can reach up to 1.23 m/s. Measurement accuracy is then evaluated by comparing with hot wire anemometry results. Moreover, the distributions of velocity and turbulence intensity in a supersonic free jet from a Laval nozzle with a Mach number of 1.8 are also obtained quantitatively. The sampling rate in this measurement is determined to be approximately 10 k Hz.  相似文献   

20.
The paper is devoted to the study of compressible flows and transonic shocks in diverging nozzles in the framework of the full compressible Euler system. Consider a nozzle having a shape as a diverging truncated sector with generic opening angle: if the upstream flow at the entrance is supersonic and is near to an axial symmetric flow, and if all parameters of the upstream flow and the receiver pressure at the exit are suitably assigned, then a transonic shock appears in the nozzle. To determine the transonic shock and the flow in the nozzle leads to a free boundary value problem for a nonlinear partial differential equation. We prove that the receiver pressure can uniquely determine the location of the transonic shock, as well as the flow behind the shock. Such a conclusion was conjectured by Courant and Friedrichs, and is confirmed theoretically in this paper for the divergent nozzles. The main advantage of this paper compared with the previous studies on this subject is that the section of the nozzle is allowed to vary substantially, while the transonic shock is not assumed to pass a fixed point. The situation coincides with the requirement in Courant-Friedrichs’ conjecture. To describe the compressible flow we use the full Euler system, which is purely hyperbolic in the supersonic region and is elliptic-hyperbolic in the subsonic region. Solving the free boundary value problem of an elliptic-hyperbolic problem forms the main part of this paper. In our demonstration some new approaches, including the introduction of a pseudo-free boundary problem and the corresponding relaxation, design of a delicate double iteration scheme, are developed to overcome the difficulties caused by the divergence of the nozzle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号