首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(2):183-189
Abstract

The method of washing of human hair and nail samples is examined by neutron activation and γ-ray analysis. The amounts of Na, K, Br, Au, Zn and La that are removed by successive washings determine the optimum number of washing for removing these trace elements as surface contaminants. A total solution contact time with the nails is 5 minutes, and leaching effects are observed after 6 washings.  相似文献   

2.
A procedure for the determination of trace elements in human hair has been proposed by electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP-OES) with slurry sampling. Slurry was prepared by immersing human hair with conc. HNO3 and then adding a polytetrafluoroethylene (PTFE) slurry, which was used as a chemical modifier for the improvement of vaporization characteristic of analyte. The slurry was homogenized with an ultrasonic vibrator before the measurement. The vaporization behaviour of the analytes in slurry and solution and the main influence factors for the determination were studied with the addition of PTFE systematically. Detection limits for this method varied from 0.033?µg?g?1 (Cu) to 3.21?µg?g?1 (Zn) with the relative standard deviations (RSDs) of 2.8–7.1%. The proposed method was successfully applied for the determination of trace elements (Cu, Mn, Cr, Fe, Zn, Cd and Pb) in human hair with minimum chemical pretreatment and aqueous calibration. The accuracy was checked by comparing the results of this method with those using pneumatic nebulization (PN) ICP-OES after a conventional acid decomposition of the same sample. In addition, the standard reference material of human hair (GBW 07601) was analysed with good agreement between the results from the proposed method and the certified values.  相似文献   

3.
The efficiency of oxidation in wet decomposition procedures for organic materials can be of great importance to the quality of the analytical data from various measurement techniques. A novel, microwave-assisted, high-temperature/high-pressure UV-TiO2 digestion procedure was developed for the accelerated decomposition of various biological samples. The technique is based on a closed, pressurized, microwave digestion apparatus (MW). UV irradiation is generated by immersed electrodeless Cd discharge lamp operated by the focused microwave field in the single polymer vessel. To enhance oxidation efficiency, a photocatalyst TiO2 was added to the microwave heated Teflon bomb. Measures of digestion completeness were provided by the appearance of carbon content and determination of trace and minor elements, enabling a comparison of different digestion procedures and sample types. Compared with other digestion systems, unusually low residual carbon contents were obtained. For the organic compounds and biological samples digested, the residual carbon content was 1-2%, corresponding to a decomposition efficiency of 98-99%. The potential of the MW-UV-TiO2 system was illustrated by the decomposition of four certified reference materials (serum, urine, milk, arsenobetaine solution) and subsequent determination of trace and minor elements. Recoveries between 92% and 107% were found.  相似文献   

4.
有益微量元素在人体的正常生命机能和各种新陈代谢中都发挥着重要的作用,同时有害重金属含量过高会对人体产生负面的影响.指甲是微量元素代谢的途径之一,因此分析指甲中元素的含量具有重要意义.本文首先建立了指甲中元素含量测定方法,采用微波消解法对指甲样品进行前处理,再使用ICP-MS测定V、Cr、Mn、Fe、Co、Cu、Zn、A...  相似文献   

5.
Understanding the transport of trace elements through a coal-fired power plant requires reliable analytical methods for these elements in all the ingoing and outgoing mass streams. Coal and different kinds of ashes comprise the most abundant mass streams in such a plant. As a continuation of our previous work, we have optimised a digestion method for the AAS determination of heavy metals in coal samples. It has become evident that complete dissolution of metals in coal samples and accurate results in subsequent analysis can be obtained by means of applying pressurised digestion under microwave heating. The combination of HNO3 (conc.) and HF (conc.) in the volume ratio of 50?:?1 attacked the sample well enough, and good recoveries for all the metals studied were obtained. Surprisingly good results were obtained also when HNO3 alone was used as the digestion acid.  相似文献   

6.
Two microwave digestion systems (open-focused and closed-pressurized) were tested for the mineralization of human brain and bovine liver (NIST SRM 1577a) as dissolution steps prior to the determination of 16 trace elements (Bi, Cd, Co, Cs, Cu, Fe, Hg, Mn, Mo, Pb, Rb, Sb, Sn, Sr, Tl, and Zn) by inductively coupled plasma mass spectrometry (ICP-MS). Digestion parameters (mass of sample, digestion mixture, and power/time steps) were optimized using temperature and pressure sensors. Digestions with the open-focused microwave system require larger volumes of conc. HNO3 and 30% H2O2 than digestions with the closed-pressurized system. Both systems produce correct results for the bovine liver samples. The concentrations obtained for the digests of the open-focused system tend to be less precise than the concentrations from the closed-pressurized digests. Because the open-focused digests must be diluted to 50 mL to bring the acid concentration to 0.7–2.0 mol/L required by the ICP-MS (closed-pressurized digests need to be diluted to only 20 mL), the detection limits for the system with the open-focused digestion are higher than for the system with the closed-pressurized digestor. The open-focused digestor cannot handle more than 150 mg brain tissue, whereas the closed-pressurized system can mineralize 470 mg. The latter method gave better results with brain tissue than the open-focused system. The preparation of brain tissue as reference material for the determination of trace elements in brain samples is described.  相似文献   

7.
Abstract

For the determination of minute amounts of elements in environmental samples combined analytical procedures are frequently employed. The combination of suitable sample preparation techniques with adequate detection methods lead to powerful analytical procedures. Decomposition methods are an important part of combined procedures for the determination of trace elements in solid samples. After a short summary of the potential sources for systematic errors two new decomposition methods are described that are suitable for the ashing of organic environmental samples. In one method the organic sample is ashed in a high-frequency excited oxygen plasma. The second method is a high pressure decomposition that permits mineralization of the sample in sealed quartz vessels with nitric acid at temperatures up to 320°C.

For both methods the ratio of sample weight to decomposition reagents is comparatively high. This makes these methods in combination with adequate detection methods suitable for the determination of elements at very low concentrations.

X-ray fluorescence spectrometry combined with adequate preconcentration methods is very well suited for the simultaneous determination of trace elements. Following a critical evaluation of various preconcentration techniques the analytical characteristics of filter paper with immobilized complexing agents are described. Particular emphasis is given to filter papers with dithiocarbamates as chelating group.  相似文献   

8.
Bingöl D  Akçay M 《Talanta》2005,66(3):600-604
The fly ash samples obtained from Kangal Power Plant were prepared for FAAS analysis by a new approach. The trace elements of the fly ash samples were leached with appropriate solvents under suitable conditions. The leaching method is known as an effective technique for substances dissolving very hard and refractory materials. The leaching effects of solvents and their mixtures were investigated on fly ash samples that are used largely in analysis of soil and sediment samples.The fly ashes mainly consist of glassy aluminosilicates. The major components of the samples are SiO2, Al2O3, CaO and Fe2O3. Therefore, decomposition of the silicate lattice of the fly ash is required for liberation of trace elements. The dissolution process can be completed by using a mineral acid such as concentrated HCl. This technique has an advantage that the fly ash can be dissolved without any oxidation at room temperature.Maximum element recoveries were obtained by the procedure of 37% HCl leaching after the samples were treated with 2.0 ml of concentrated HF. It was also observed that maximum mass loss occurred in this procedure. The effect of the four leaching reagents, which are HCl, HNO3, HClO4 and HNO3 + HClO4, were investigated on fly ash samples that were treated with concentrated HF. An optimum leaching method was determined based on the confidence of analytical results and element recovery rates.  相似文献   

9.
Understanding the transport of trace elements through a coal-fired power plant requires reliable analytical methods for these elements in all the ingoing and outgoing mass streams. Coal and different kinds of ashes comprise the most abundant mass streams in such a plant. As a continuation of our previous work, we have optimised a digestion method for the AAS determination of heavy metals in coal samples. It has become evident that complete dissolution of metals in coal samples and accurate results in subsequent analysis can be obtained by means of applying pressurised digestion under microwave heating. The combination of HNO3 (conc.) and HF (conc.) in the volume ratio of 50 : 1 attacked the sample well enough, and good recoveries for all the metals studied were obtained. Surprisingly good results were obtained also when HNO3 alone was used as the digestion acid. Received: 18 June 1998 / Revised: 23 September 1998 / Accepted: 24 September 1998  相似文献   

10.
ICP-MS has been used for the determination of over 30 geochemically significant trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, Th, U and REEs) in anorthosites and related rock reference samples. Open acid digestion, pressure decomposition using HF, HNO3 and HClO4, and a fusion method using lithium metaborate and subsequent dissolution in dil. HNO3 were adopted for the decomposition of these rock samples before analysis. The dissolution problems and interference effects are discussed. Rh and Bi were used as internal standards. The first set of data on several rare earths and other trace elements in the Russian anorthosite reference sample, MO-6 are presented along with data on other samples. The data are compared with the available data. The results obtained with different dissolution methods were found to be in good agreement for the majority of the trace elements. The accuracy and precision achieved (better than 6% RSD in most cases) suggested that the data obtained by ICP-MS for such samples are best suited for geochemical interpretations.  相似文献   

11.
Abstract

Extractable contents of heavy metals such as Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb and Bi in soil and plant tissue samples (fruit, leaf, twig and root) collected, along a distance of 1100 m to the West, from the surroundings of a metallurgical factory producing mainly zinc, cadmium and lead were determined by flame atomic absorption spectrometry (FAAS). In addition, the determinations of Ca and Mg, macro nutrient elements for plants, were also performed. Three extractant solutions were used for dissolution of soil samples, namely aqua regia (1 HNO3+ 3 HCl) for total metal analysis, 1 mol L?1 ammonium acetate for exchangeable metal contents, and a dilute acid mixture (0.1 M HCl in 0.025 M H2SO4) for acid soluble metal contents. A mixture of HNO3 and HClO4 was used to analyze the fruit samples. The analyses of the leaf, the twig, and the root tissue samples were made by dry ashing method. The detection limits of the metals were in the range of 0.04 to 0.45 μg/mL for all soil extracts and 0.01 to 1.50 μg/mL for the fruit samples. The recovery values for all the determinations were higher than 95%. The results obtained from the analyses of plant tissue and soil samples were evaluated using linear correlation analysis and concentration factors to identify the effect of the factory near the grape-vine area.  相似文献   

12.
Two samples of Napoleon's hair were received for determination of arsenic, mercury and other trace elements by INAA. Before sample irradiation, the hairs were washed following the IAEA washing procedure. Two standard reference materials of GBW09101 (human hair) and NIST/SRM1572 (citrus leaves) were analyzed along with Napoleon's hair for quality control. Standardization was conducted by applying the k 0-method implemented in the program MULTINAA. The contents of arsenic and mercury as well as three additional elements chromium, antimony and zinc in Napoleon's hair are reported. Compared to the present normal levels, all of the determined elements in Napoleon's hair, except the mercury, are found to be irregular.  相似文献   

13.
Vapour phase dissolution (VPD) has been used for the dissolution of high purity arsenic through acid vapours generated by aquaregia mixture, prior to trace element characterization. Trace impurities in As were determined by employing ion-exchange and volatilization methodologies for quantitative separation of the As matrix. After dissolving the As matrix through VPD procedure, sample solution in 0.1 M HF medium was loaded on Dowex-50WX8. The sorbed elements were then eluted first with a 20 ml aliquot of 4 M HNO3 followed by another 10 ml of 6 M HNO3 for the elution of REE (La, Ce, Gd and Lu). In the volatilization procedure, arsenic was removed from H2SO4 medium as volatile bromide by three successive additions of HBr at a temperature of about 220 °C. The trace element determinations were carried out by ICP-QMS. In both the matrix separation procedures namely on Dowex-50WX8 in 0.1 M HF medium and volatilization from H2SO4+HBr medium showed that the removal of arsenic matrix was nearly quantitative (>99.99%). The recoveries of trace elements were found to be >95%. Good agreement was obtained for many elements in both the procedures. The VPD approach provides considerable reduction of the process blank levels for all the elements when compared with conventional open dissolution approach. The subsequent ion-exchange or volatilization steps, contribute more to the overall process blanks.  相似文献   

14.
Recoveries of selected elements were studied for fast decomposition of biological and other materials using alkaline-oxidative fusion in a mixture of NaOH and Na2O2 at 850–900 °C. The procedure yields total mineralization of samples within 2 to 3 minutes. It is especially suitable in radiochemical activation analysis (RAA) for the determination of elements forming short-lived radionuclides. Recoveries of the elements F, Si, S, Cl, Ti, V, Mn, Ge, As, Br, Mo, Ru, In, Sb, I, Re, Os, and U determined using radiotracers were in the range 95–100%, while those for Se and Hg were significantly lower and highly variable.  相似文献   

15.
A digestion procedure was developed for the determination of selected elements (Al, Ba, Ca, Ce, Cd, Co, Cr, Cu, Fe, La, Mg, Ni, Sr, Pb, Zn) in sediments using XeF2. The use of XeF2 has some interesting features but this reagent should be handled only under dry gas which is a severe limitation of the methodology. In a first step the sediment sample (0.1 g) is dried (120 °C) and digested by XeF2 (1.5 g) in the vapor phase (190 °C; 9 × 106 Pa). Then the dry residue is dissolved in aqua regia and the solution digested at high pressure once again (aqua regia digestion). Subsequently the digested solution is diluted with sub-boiling distilled water and is ready for the analysis by ICP-MS. The sediment standard CRM 320 was analyzed to verify the procedure. A comparison of the results with those obtained by the normally used fluoric acid digestion showed that the recovery rates of each investigated element agreed within a confidence interval of 95%, except Cr. The recovery rate of Cr was lower for the XeF2 digestion than for the fluoric acid digestion by more than 5%. Further studies were focussed on the possible digestion of SiC by XeF2 as first step for the trace element determination. In the gaseous reaction products Si could be detected by ICP-MS which gives evidence to a decomposition of SiC. A digestion procedure for small Si samples (0.010 g) was developed. Detection limits (DL) determined for selected elements of analytical interest (Al, Ca, Cd, Cr, Co, Cu, Fe, Mg, Ni, Pb) were between 1 to 12 ng/g. For most of the elements this is an improvement in comparison to the HF vapor phase digestion. The verification of the method was carried out with GFAAS. Received: 17 February 1999 / Revised: 15 June 1999 / Accepted: 17 June 1999  相似文献   

16.
Two microwave digestion systems (open-focused and closed-pressurized) were tested for the mineralization of human brain and bovine liver (NIST SRM 1577a) as dissolution steps prior to the determination of 16 trace elements (Bi, Cd, Co, Cs, Cu, Fe, Hg, Mn, Mo, Pb, Rb, Sb, Sn, Sr, Tl, and Zn) by inductively coupled plasma mass spectrometry (ICP-MS). Digestion parameters (mass of sample, digestion mixture, and power/time steps) were optimized using temperature and pressure sensors. Digestions with the open-focused microwave system require larger volumes of conc. HNO(3) and 30% H(2)O(2) than digestions with the closed-pressurized system. Both systems produce correct results for the bovine liver samples. The concentrations obtained for the digests of the open-focused system tend to be less precise than the concentrations from the "closed-pressurized" digests. Because the "open-focused" digests must be diluted to 50 mL to bring the acid concentration to 0.7-2.0 mol/L required by the ICP-MS (closed-pressurized digests need to be diluted to only 20 mL), the detection limits for the system with the open-focused digestion are higher than for the system with the closed-pressurized digestor. The open-focused digestor cannot handle more than 150 mg brain tissue, whereas the closed-pressurized system can mineralize 470 mg. The latter method gave better results with brain tissue than the open-focused system. The preparation of brain tissue as reference material for the determination of trace elements in brain samples is described.  相似文献   

17.
The determination of impurities in titanium dioxide pigments, such as Al, Cd, Cr, Fe, Mn, P, Zn and Zr, is relevant because trace elements affect pigment properties. The critical step in the analysis of this pigment is the conversion of the solid sample to a representative solution. This study compared four acid decomposition procedures for TiO2 for the determination of Al, P and trace impurities using inductively coupled plasma optical emission spectrometry. The decomposition procedures investigated involved acid digestion with: (i) (NH4)2SO4/H2SO4; (ii) HF/H2SO4; (iii) H3PO4; and (iv) HCl/HNO3/HF. This latter mixture was tested in a microwave-assisted procedure with closed vessels. Comparing the procedures using conventional conductive heating, the procedure using (NH4)2SO4/H2SO4 was the most suitable for complete decomposition of TiO2 samples, requiring approximately 30 min. Applying a paired t-test, it was shown that all strategies led to results in agreement at a 95% confidence level with those obtained using X-ray fluorescence. The accuracy for Cr, Fe, P and Zr was also checked using a certified reference material, and again all results were in agreement at a 95% confidence level. The performance of two ICP-OESs, one based on a mini-torch using a radial view configuration, and the other based on an axial view configuration, were compared. Both plasmas are intensely affected by matrix constituents. The mini-torch plasma is less able to cope with high amounts of solids; however this parameter also negatively affects the background level when using axial-viewed ICP-OES.  相似文献   

18.
Isosulfan blue dye is used in sentinel node mapping technique to evaluate breast cancer patients where determination of different trace elements is required. A UV-photolysis assisted mineralization of isosulfan blue is described here for the determination of trace elements (Cr, Cd, Cu, Sn and Pb) by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In the present study advanced oxidation processes such as UV, UV/H2O2, and UV/H2O2/HNO3 have been assessed and compared for the degradation and mineralization of isosulfan blue dye. The extent of mineralization was determined on the basis of total organic carbon (TOC) measurement. The adopted procedure (UV/HNO3/H2O2) provided very low TOC content (0.5%), corresponding to a mineralization efficiency of > 99%. With the present procedure, the use of dynamic reaction cell (DRC) or collision cell was not required for chromium determination which suffers interference from the presence of carbon. Method detection limits were 0.0028, 0.0021, 0.016, 0.007, and 0.005 μg g? 1 for Cr, Cd, Cu, Sn and Pb respectively. The values obtained by the proposed method were cross-validated by those obtained by ETAAS analysis. The expanded uncertainties in the measurement at 95% confidence level (coverage factor 2) are in the range of 13.7–25.8%.  相似文献   

19.
A simple and rapid inductively coupled plasma optical emission spectrometric method for the determination of trace level impurities like REEs, Y, Cd, Co, V, Mg, B, Ca, Cr, Mn, Ni, Cu, Zn and Al in uranium oxide samples is described. The method involves solvent extraction separation of uranium from 6 M HNO3 acid medium using di (2-ethyl hexyl) phosphoric acid in toluene, which selectively separates uranium leaving behind the trace impurities in the aqueous media, for quantification by ICP-OES. The method has been applied to few synthetic samples and five certified reference U3O8 standards. The results are compared with other methods such as TBP-TOPO-CCl4 and 1,2 diaminocyclohexane N,N,N′,N′-tetra acetic acid (CyDTA)–ammonium hydroxide (NH4OH) separation techniques. Different experimental parameters like contact time, acidity, aqueous to organic ratio etc., are optimized for better and accurate results. The method is simple, rapid, accurate and precise for all the studied elements, showing a relative standard deviation of 1.5–12.0% at trace levels studied (5.5–12% at 0.2 μg/mL and 1.5–6.0% at 0.5 μg/mL), on the synthetic samples prepared from high purity oxides.  相似文献   

20.
Mariet C  Belhadj O  Leroy S  Carrot F  Métrich N 《Talanta》2008,77(1):445-450
In order to implement a simpler, less expensive and more safe sample dissolution procedure, we have substituted the HF-HClO4 mixture by NH4F. By testing three certified reference materials, lichen 336, basalt BE-N, soil 7, it was found that the three-reagents digestion without HF and HClO4 (HNO3 + H2O2 + NH4F was used) was very effective for the pretreatment of ICP-MS measurement. The comparison was based on the measurement results and their uncertainties. All are reference material for amount contents of different trace elements. The accuracy and precision of the developed method were tested by replicate analyses of reference samples of established element contents. The accuracy of the data as well as detection limits (LODs) vary among elements but are usually very good (accuracy better than 8%, LODs usually below 1 μg/g in solids). ICP-MS capabilities enable us to determine routinely 13 and 16 minor and trace elements in basalt and soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号