首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Endothelin receptor antagonists (ERAs) such as, ambrisentan, macitentan and sitaxentan are primarily used for the treatment of pulmonary arterial hypertension. Considering the rise in endothelin in pre-eclampsia, ERAs may also be useful in its treatment. To evaluate the pharmacokinetics of ERAs, a rapid ultra-performance liquid chromatography tandem mass spectrometry method was developed and validated to determine the concentration of ambrisentan, macitentan and sitaxentan in human plasma. Plasma samples were treated with methanol to induce protein precipitation. A chromatographic separation was performed on a C18 column using a gradient of methanol–water containing 0.1% formic acid and 0.013% ammonium acetate and a flow rate of 0.5 ml/min. Multiple reaction monitoring was used for quantification. This method was validated in a linear range of 20.28–2028 μg/l for ambrisentan, 4.052–405.2 μg/l for macitentan and 205.4–10 270 μg/l for sitaxentan. The method was successfully validated according to US Food and Drug Administration guidelines to determine the concentrations of macitentan, ambrisentan and sitaxentan in human plasma. This method is now being used for study samples and clinical patient samples.  相似文献   

2.
《Analytical letters》2012,45(7):1365-1379
Abstract

A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC–ESI–MS) method was developed and validated for the identification and quantification of indapamide in human plasma. After the addition of the internal standard (IS) and 0.1 M sodium hydroxide solution, plasma samples were extracted with diethyl ether. The organic layer was evaporated under a stream of nitrogen at 40°C. The residue was reconstituted with 200 µL methanol. The compounds were separated on a stainless‐steel column (C18 Shim‐pack 5 µm 150 mm×2.0 mm I.D., Shimadzu) at a flow rate of 0.2 mL/min by a gradient elution. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via an electrospray ionization (ESI) source. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 0.5–100.0 ng/mL with a coefficient of determination (r) of 0.9998 and good back‐calculated accuracy and precision. The intra‐ and inter‐day precision (RSD%) was lower than 10% and accuracy ranged from 85% to 115%. The lower limit of quantification was identifiable and reproducible at 0.2 ng/mL with 0.2 mL plasma. The proposed method enables the unambiguous identification and quantification of indapamide for pharmacokinetic, bioavailability, or bioequivalence studies.  相似文献   

3.
A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC–MS/MS) method was developed and fully validated for determination of arformoterol in rat plasma, lung and trachea tissues.  相似文献   

4.
A simple, fast and sensitive LC?CMS/MS method was developed and validated for the simultaneous determination of the concentrations of temsirolimus and its major metabolite, sirolimus, in human whole blood. The blood sample (100???L) after adding temsirolimus-d7 and sirolimus-d3 internal standards was precipitated with 0.200?mL of methanol/0.300?M zinc sulfate (70/30, v/v), then analyzed by a Shimatzu LC system coupled to a Sciex API-5000 mass spectrometer. The chromatographic separation was carried out on a BDS Hypersil C8 column (50?×?3.0?mm, 5???m) at 50?°C with a mobile phase composed of methanol/water/formic acid (72/28/0.1) (v/v/v) containing 2.50?mM ammonium acetate. Mass spectrometric detection was performed using electrospray positive ionization with multiple reaction monitoring mode. This method was validated from 0.250 to 100?ng?mL?1 for temsirolimus and 0.100 to 40.0?ng?mL?1 for sirolimus. The lower limits of quantitation were 0.25?ng?mL?1 for temsirolimus and 0.1?ng?mL?1 for sirolimus. The intra-day and inter-day precisions (CV?%) of spiked quality control (QC) samples were less than 10.4 and 9.6?%, respectively. The accuracies as determined by the relative error for QC samples were less than 12.1?% for intra-day and 7.3?% for inter-day. No significant matrix effect was observed. This method has been successfully applied to analyze clinical pharmacokinetic study samples. The assay reproducibility was also demonstrated by using incurred samples.  相似文献   

5.
6.
7.

Liquid chromatography coupled with tandem mass spectrometry for therapeutic drug monitoring of immunosuppressants has been widely adopted in clinical chemistry laboratories. However, UPLC is replacing classical LC techniques, providing higher resolution and speed. We developed and validated an UPLC–MS/MS method for the simultaneous measurement of cyclosporine A, everolimus, sirolimus and tacrolimus concentrations in human blood. Following extraction with a zinc sulfate solution and acetonitrile, the chromatographic separation was achieved using an Acquity® UPLC® BEH™ (2.1 × 30 mm id, 1.7 µm) reverse-phase C18 column, with a water/methanol linear gradient containing 2 mM ammonium acetate with 0.1 % formic acid at a 0.5 mL min−1 flow rate. All immunosuppressants were detected by ESI mass spectrometry in positive ion multiple reaction monitoring mode using mass-to-charge transitions of 1219.8 → 1202.6/1184.4, 975.5 → 908.3/891.6, 931.5 → 864.3/883.3, 821.4 → 768.2/719.9 for cyclosporine A, everolimus, sirolimus and tacrolimus, respectively. Coefficients of variation and relative bias were less than 5.8 and 9.7 % for cyclosporine A, 8.7 and 6.4 % for everolimus, 8.5 and 7.2 % for sirolimus and 6.7 and 4.7 % for tacrolimus. Limits of quantification were 15.4 µg L−1 for cyclosporine A, 1.42 µg L−1 for everolimus, 1.58 µg L−1 for sirolimus and 0.65 µg L−1 for tacrolimus. Mean recoveries were greater than 77.6 % for all immunosuppressants. Evaluation of the matrix effect showed ion suppression for all the immunosuppressants, except for cyclosporine A, which suffered ion enhancement. No carry-over was observed. The validated method appears to be well adapted for therapeutic drug monitoring of multiple immunosuppressants in daily clinical practice.

  相似文献   

8.
A reliable and sensitive ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed for the determination of zanubrutinib in the plasma of beagle dogs. The column used was an Acquity BEH C18 column (2.1 mm × 50 mm, 1.7 μm), maintained at 40°C with an injection volume of 2 μl. The gradient elution program was as follows: 0–1 min, 10–10% A; 1–1.1 min, 10–90% A; 1.1–2.1 min, 90–90% A; 2.1–2.2 min, 90–10% A; 2.2–3.0 min, 10–10% A. Mobile phase A was 0.1% formic acid, B was acetonitrile, and the total analysis time was 3 min. The mass spectrometry was performed in positive ion mode, and the scanning mode was multi-reaction monitoring mode with electrospray ionization as the ion source; m/z 472.2 → 455.01 for zanubrutinib and m/z 441.03 → 137.99 for ibrutinib (internal standard). The plasma samples were processed by protein precipitation. The standard curve showed good linearity (r2 = 0.999 8) in the range of 1.0–1,000 ng/ml (zanubrutinib) with a low limit of quantification of 1 ng/ml. Also, the intra-day and inter-day precision (RSD) was <5.88% and the accuracy (RE) ranged from −1.56 to 1.08%; the recoveries of zanubrutinib in beagle plasma ranged from 90.12 to 93.53% (RSD 1.67–6.42%) and the ME values of zanubrutinib were 98.70–101.06% (RSD 5.37–8.49%, n = 6). All values meet US Food and Drug Administration requirements. A rapid, highly selective and sensitive method for the determination of zanubrutinib concentration in plasma by UPLC–MS/MS was successfully developed. This method is suitable for pharmacokinetic studies in beagle dogs by following oral administration of zanubrutinib.  相似文献   

9.
Semen Euphorbiae (SE), the dry and mature seed of Euphorbia lathyris L., a common traditional Chinese medicine, has significant pharmacological activity. However, its toxicity limits its clinical application, and less toxic Semen Euphorbiae Pulveratum (SEP) is often used clinically. To explore the possible mechanism of SE frost-making and attenuation, this study used ultrahigh-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry to perform a comprehensive metabolomics analysis of serum and urine samples from rats treated with SE and SEP, and performed histopathological evaluation of liver, kidney and colon tissues. Meanwhile, the different metabolites were visualized through multivariate statistical analysis and the HMDB and KEGG databases were used to distinguish the differential metabolites of SE and SEP to reveal related metabolic pathways and their significance. In total, 32 potential biomarkers, 14 in serum and 18 in urine, were identified. The metabolic pathway analysis revealed that arachidonic acid metabolism, sphingolipid metabolism, tyrosine and tryptophan biosynthesis, the tricarboxylic acid cycle and seven other metabolic pathways were significantly altered. Importantly, compared with SE, SEP reduced the metabolic disorder related to endogenous components. The mechanism may be related to the regulation of lipid metabolism, intestinal flora metabolites, amino acid metabolism and energy metabolism. This study provided new insights into the possible mechanism of SE freezing and attenuation.  相似文献   

10.
Hypertension is a major risk factor for atherosclerosis and ischemic heart disease. Most hypertensive patients need a combination of antihypertensive agents to achieve therapeutic goals. A rapid, sensitive, and selective liquid chromatography-tandem mass spectrometric method was developed and validated for simultaneous determination of enalapril maleate (ENA) and its major metabolite enalaprilat (ENAT), nitrendipine (NIT) and its major metabolite dehydronitrendipine (DNIT), and hydrochlorothiazide (HCT) in human plasma using felodipine as an internal standard (IS). The drugs were extracted from plasma using one-step protein precipitation. Chromatographic separation was performed on a Symmetry C18 column, with water and acetonitrile (10:90, v/v) as mobile phase. The detection was carried out using multiple reaction monitoring mode and coupled with electrospray ionization source. Multiple reaction monitoring transitions were m/z 377.1 → 234.1 for ENA, m/z 349.2 → 206.1 for ENAT, m/z 361.2 → 315.1 for NIT, m/z 359 → 331 for DNIT, m/z 295.9 → 205.1 for HCT, and m/z 384.1 → 338 for felodipine (IS). The method was linear over concentration ranges of 1–200, 20–500, 5–200, 2–100, and 5–200 ng/mL for ENA, ENAT, NIT, DNIT, and HCT, respectively, with r2 ≥ 0.99. Method validation was performed according to U.S. Food and Drug Administration guidelines. The validated method showed good sensitivity and selectivity and could be applied for therapeutic drug monitoring and bioequivalence studies.  相似文献   

11.
The biosynthesis of sialic acid (Neu5Ac) leads to the intracellular production of cytidine-5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac), the active sialic acid donor to nascent glycans (glycoproteins and glycolipids) in the Golgi. UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase myopathy is a rare autosomal recessive muscular disease characterized by progressive muscle weakness and atrophy. To quantify the intracellular levels of CMP-Neu5Ac as well as N-acetylmannosamine (ManNAc) and Neu5Ac in human leukocytes, we developed and validated robust liquid chromatography–tandem mass spectrometry methods. A fit-for-purpose approach was implemented for method validation. Hydrophilic interaction chromatography was used to retain three hydrophilic analytes. The human leukocyte pellets were lysed and extracted in a methanol–water mixture and the leukocyte extract was used for LC–MS/MS analysis. The lower limits of quantitation for ManNAc, Neu5Ac and CMP-Neu5Ac were 25.0, 25.0 and 10.0 ng/ml, respectively. These validated methods were applied to a clinical study.  相似文献   

12.
Trans-ferulic acid-4-β-glucoside (FAG) is a monomer extracted from Radix Aconiti Lateralis Preparata, which is a potential candidate for the prevention and treatment of cold injury. To determine the concentration of FAG in rats, it is essential to develop an ultra-performance liquid chromatography coupled with MS/MS method. Chromatographic separation was achieved by an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm). A Xevo triple quadrupole tandem mass spectrometer was used to quantitatively determine FAG in the negative-ion mode. The standard calibration curve was linear over the concentration range of 0.1–100 μg/mL and 0.0626–31.28 μg/g for rat plasma and liver tissue homogenate samples, respectively. The inter- and intra-batch precision (% relative standard deviation) of the assay was ≤8.29%, and accuracy (% relative error) ranged from −7.41 to 10.99%. The matrix effect was between 92.99 and 102.39%. The oral absolute bioavailability of FAG was obtained as 1.80%. The results of tissue distribution suggested that FAG spread rarely in the liver and brown adipose, which was not propitious to exert its ability to treat cold injury. In general, these studies were significant to provide necessary information for further study.  相似文献   

13.
Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) is a preeminent analytical tool for rapid biomedical analysis with the objective of reducing analysis time and maintaining good efficiency. In this study a simple, rapid, sensitive and specific ultra-performance liquid chromatography–tandem mass spectrometry method was developed and validated for quantification of the angiotensin II receptor antagonist, irbesartan and hydrochlorthiazide in human plasma. After a simple protein precipitation using methanol and acetonitrile, irbesartan, hydrochlorthiazide and internal standard (IS) telmisartan were separated on Acquity UPLC BEH? C18 column (50 × 2.1 mm, i.d. 1.7 μm, Waters, USA) using a mobile phase consisting of acetonitrile:10 mM ammonium acetate:formic acid (85:15:0.1 % v/v/v) pumped at a flow rate of 0.3 mL/min and detected by tandem mass spectrometry with negative ion mode. The ion transitions recorded in multiple reaction monitoring mode were m/z 427.2 → 193.08 for irbesartan, m/z 295.93 → 268.90 for hydrochlorthiazide and m/z 513.2 → 287.14 for IS. The assay exhibited a linear dynamic range of 30–500 ng/mL for irbesartan and 1–500 ng/mL in human plasma with good correlation coefficient of (0.996) and (0.997) and with a limit of quantitation of 30  and 1 ng/mL for irbesartan and hydrochlorthiazide, respectively. The intra- and inter-assay precisions were satisfactory; the relative standard deviations did not exceed 10.13 % for irbesartan and 11.14 % for hydrochlorthiazide. The proposed UPLC–MS/MS method is simple, rapid and highly sensitive, and hence it could be reliable for pharmacokinetic and toxicokinetic study in both animals and humans.  相似文献   

14.
15.
16.
17.
Numerous studies have suggested that intra-articular administration of antibiotics following primary revision surgery may be one of the methods for treating prosthetic joint infection (PJI). Vancomycin and meropenem are the two most commonly used antibiotics for local application. Determining the concentrations of vancomycin and meropenem in the serum and synovial fluid of patients with PJI plays a significant role in further optimizing local medication schemes and effectively eradicating biofilm infections. This study aimed to establish a rapid, sensitive, and accurate ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method for determining the concentrations of vancomycin and meropenem in human serum and synovial fluid. Serum samples were processed using acetonitrile precipitation of proteins and dichloromethane extraction, while synovial fluid samples were diluted before analysis. Chromatographic separation was achieved in 6 min on a Waters Acquity UPLC BEH C18 column, with the mobile phase consisting of 0.1% formic acid in water (solvent A) and acetonitrile (solvent B). Quantification was carried out using a Waters XEVO TQD triple quadrupole mass spectrometer with an electrospray ionization (ESI) source in positive ion mode. The multiple reaction monitoring (MRM) mode was employed to detect the following quantifier ion transitions: 717.95–99.97 (norvancomycin), 725.90–100.04 (vancomycin), 384.16–67.99 (meropenem). The method validation conformed to the guidelines of the FDA and the Chinese Pharmacopoeia. The method demonstrated good linearity within the range of 0.5–50 μg/ml for serum and 0.5–100 μg/ml for synovial fluid. Selectivity, intra-day and inter-day precision and accuracy, extraction recovery, matrix effect, and stability validation results all met the required standards. This method has been successfully applied in the pharmacokinetic/pharmacodynamic (PK/PD) studies of patients with PJI.  相似文献   

18.
19.
Twenty-one new triterpenoids (121) and fifteen known triterpenoids (2236) were rapidly isolated from Rhododendron latoucheae by the hyphenated technique HPLC?MS?SPE?NMR. The structures of 1?21 were elucidated from NMR, MS, and extensive spectroscopic methods and electronic circular dichroism (ECD) analyses. Notably, compound 1 is the first example of 23-norquinone methide. Compounds 1, 2, 6, 14, 21, 28, 30, and 35 exhibited potent activities against HSV-1, with IC50 values from 0.71 to 14.62?μM.  相似文献   

20.
Iron nanocomposite adsorbent was prepared by green technology with 90% yield. The prepared iron nanocomposite adsorbent was used in solid-phase micromembrane tip extraction (SPMMTE) sample preparation technique. Analysis of atenolol and atorvastatin was performed in human plasma using SPMMTE and Q-TOF–UPLC–MS methods. New generation Acquity UPLC HSS penta fluoro phenyl (2.1?×?75?mm2; 1.8?µm) column was used with acetonitrile–0.1% formic acid in water (50:50 v/v) as mobile phase. The flow rate was 0.2?mL?min?1 with electrospray mass detection. The limits of detection were 0.2 and 0.4?ng active mass for atenolol and atorvastatin, while the limits of quantification were 1.0 and 2.0?ng active mass, respectively. The values of the retention times were 3.224 and 3.907 for atorvastatin and atenolol. The values of the separation and resolution factors were 1.31 and 1.71, respectively. The peaks were sharp with base lined separation within 4.2?min. The developed SPMMTE and Q-TOF–UPLC–MS methods were reproducible, fast, precise, robust, rugged, and economic for the analyses of atenolol and atorvastatin in human plasma. The reported methods can be applied for monitoring of the reported drugs at trace level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号