首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lung cancer has long been considered a disease that might benefit from the dose escalation of radio/chemotherapy afforded by a stem cell transplant. However, the clinical experience with high-dose chemotherapy and autologous bone marrow transplantation in lung cancer has been disappointing, with most trials showing little or no improvement in long-term survival. Unfortunately, lung cancer has a tendency to metastasize to the bone marrow, and lung cancer cells are known to circulate in the peripheral blood. Therefore, there is concern that autologous stem cell grafts from lung cancer patients may reinoculate recipients with live tumor cells. Photochemical purging of stem cell grafts with Merocyanine 540 (MC540) is highly effective against a wide range of leukemia and lymphoma cells and is well tolerated by normal hematopoietic stem and progenitor cells. Most solid tumor cells (including lung cancer cells), however, are only moderately sensitive or refractory to MC540-mediated photodynamic therapy (PDT). We report here that postirradiation hyperthermia (< or = 42 degrees C, 3 h) potentiates the MC540-mediated photoinactivation of both wild-type (H69) and cisplatin-resistant mutant (H69/CDDP) small cell lung cancer cells by several orders of magnitude, while only minimally enhancing the depletion of normal human granulocyte/macrophage progenitor cells. Our data suggest that postirradiation hyperthermia provides a simple and effective means of extending the utility of MC540-PDT to the purging of stem cell grafts contaminated with lung cancer and possibly other solid tumor cells.  相似文献   

2.
3.
The differential sensitivity to merocyanine 540 (MC540)-sensitized photoirradiation of leukemia cells, selected solid tumor cells, and normal pluripotent hematopoietic stem cells has been successfully exploited for the extracorporeal purging of simulated autologous remission bone marrow grafts. In this communication, we compare the effects of fractionated vs continuous irradiation upon the MC540-sensitized photoinactivation of L1210 and K562 leukemia cells. Exposure to MC540 (15 micrograms/mL) and fractionated doses of white light inactivated fewer in vitro clonogenic cells than exposure to an equivalent dose of continuous irradiation, provided the irradiation doses were small (8.1-16.2 kJ/m2) and spaced 1-2 h apart. The dye-sensitized photoinactivation of leukemia cells was enhanced when cells were stored at 4 degrees C instead of 37 degrees C between irradiation periods, most likely in part because the cells were unable to repair sublethal photodynamic damages at the lower temperature. These data suggest that cells can recover from sublethal damage inflicted by the plasma membrane-active photosensitizer, MC540.  相似文献   

4.
Abstract— Simultaneous exposure to merocyanine 540 (MC540) and light of a suitable wavelength kills leukemia, lymphoma and neuroblastoma cells but is relatively well tolerated by normal pluripotent hematopoietic stem cells. This differential phototoxic effect has been exploited in preclinical models and a phase I clinical trial for the extracorporeal purging of autologous bone marrow grafts. Salicylate is known to potentiate the MC540-mediated photokilling of tumor cells. Assuming that salicylate induces a change in the plasma membrane of tumor cells (but not normal hematopoietic stem cells) that enhances the binding of dye molecules it has been suggested that salicylate may provide a simple and effective means of improving the therapeutic index of MC540-mediated photodynamic therapy. We report here on a direct test of this hypothesis in a murine model of bone marrow transplantation as well as in clonal cultures of normal murine hematopoietic progenitor cells. In both systems, salicylate enhanced the MC540-sensitized photoinactivation of leukemia cells and normal bone marrow cells to a similar extent and thus failed to improve the therapeutic index of MC540 significantly. On the basis of a series of dye-binding studies, we offer an alternative explanation for the potentiating effect of salicylate. Rather than invoking a salicylate-induced change in the plasma membrane of tumor cells, we propose that salicylate displaces dye molecules from serum albumin, thereby enhancing the concentration of free (active) dye available for binding to tumor as well as normal hematopoietic stem cells.  相似文献   

5.
Paediatric solid tumours exhibit steep dose-response curves to alkylating agents and are therefore considered candidates for high-dose chemotherapy and autologous stem cell support. There is growing evidence that autologous stem cell grafts from patients with solid tumours are frequently contaminated with live tumour cells. The objective of this study was to perform, in a preclinical purging model, an initial assessment of the safety and efficacy of a two-step purging procedure that combined Merocyanine 540-mediated photodynamic therapy (MC540-PDT) with a brief exposure to the alkyl-lysophospholipid, Edelfosine. Human and murine bone marrow cells and Neuro-2a murine neuroblastoma, SK-N-SH human neuroblastoma, SK-ES-1 and U-2 OS human osteosarcoma, G-401 and SK-NEP-1 human Wilms' tumour, and A-204 human rhabdomyosarcoma cells were exposed to a fixed dose of MC540-PDT followed by a brief incubation with graded concentrations of Edelfosine. Survival was subsequently assessed by in vitro clonal assay or, in the case of CD34-positive haematopoietic stem cells, by an immunohistochemical method. Combination purging with MC540-PDT and Edelfosine depleted all tumour cells by >4 log while preserving at least 15% of murine granulocyte/macrophage progenitors (CFU-GM), 34% of human CFU-GM, and 31% of human CD34-positive cells. The data suggest that combination purging with MC540-PDT and Edelfosine may be useful for the ex vivo purging of autologous stem cell grafts from patients with paediatric solid tumours.  相似文献   

6.
Normal hematopoietic progenitor cells from 129S6/SvEv mice are substantially less sensitive to Merocyanine 540 (MC540)-mediated photodynamic therapy (PDT) than hematopoietic progenitors from sex- and age-matched C57BL/6 mice. When exposed to a combination of MC540 and light commonly used for the extracorporeal purging of hematopoietic stem cells, granulocyte/macrophage progenitors (CFU-GM) from C57BL/6 mice are depleted 7.9-fold whereas CFU-GM from 129S6/SvEv and (C57BL/6 x 129S6/SvEv) F1 mice are depleted 1.4- and 2-fold, respectively. The same rank order of sensitivity is also found with regard to unipotent progenitors of granulocytes and macrophages and with regard to early and late erythroid progenitors. The resistance of hematopoietic progenitors from 129S6/SvEv mice to MC540-PDT appears to be the result of reduced dye binding rather than the result of high levels of intracellular glutathione. These findings have practical implications for the design of preclinical tests of PDT in animal models. They may also provide a useful tool for future investigations into the molecular determinants of sensitivity to MC540-PDT.  相似文献   

7.
The purpose of this study was to determine in a preclinical purging model, how effective crystal violet-mediated photodynamic therapy (CV-PDT) is against solid tumor and drug-resistant mutant tumor cells, and if certain limitations of CV-PDT can be overcome by using crystal violet (CV) in combination with the membrane-active photosensitizer, Merocyanine 540 (MC540). When used under conditions that preserved an adequate fraction of normal human granulocyte/macrophage progenitors (CFU-GM), CV-PDT failed to achieve meaningful reductions of DU145 prostate, H69 small cell lung cancer, and MDA-MB-435S breast cancer cells. Melphalan-resistant L1210/L-PAM1, adriamycin-resistant P388/ADR, and adriamycin-resistant HL-60/ADR leukemia cells were markedly less sensitive to CV-PDT than their wild-type counterparts, whereas cisplatin-resistant H69/CDDP cells were more sensitive than wild-type H69 cells. Sequential exposure to MC540- and CV-PDT under conditions that preserved an adequate fraction (73% and 29%, respectively) of normal CD34-positive hematopoietic stem cells and granulocyte/macrophage progenitors was highly effective against H69 (99.997% reduction) and H69/CDDP (99.999% reduction) cells, but ineffective against HL-60/ADR, MDA-MB-435S, and DU145 cells. CV thus shows only limited promise as a single-modality purging agent. However, in certain situations, clinically meaningful tumor cell depletions can be obtained by using CV in combination with a second photosensitizer such as MC540.  相似文献   

8.
L1210 leukemia cells were synchronized by a double thymidine block technique and then characterized with regard to their susceptibility to merocyanine 540 (MC540)-sensitized photoinactivation. Cells harvested 5 (G2/M phase) h after release from the second thymidine block were most susceptible to MC540-sensitized photoinactivation followed, in order of decreasing sensitivity, by cells harvested 2 (S phase) h and by cells harvested 7 (G1 phase) h after release from the second block. The expression of dye-binding sites changed very little during the cell cycle.  相似文献   

9.
MC540-mediated photolysis has several features that make it potentially attractive as a clinical purging procedure. (1) The experience with experimental tumors suggests that MC540-mediated photolysis is effective against a broad range of leukemias and solid tumors, including drug-resistant tumors (Sieber et al., 1984b). Drug-resistant tumor cells are likely to occur in heavily pretreated patients. (2) MC540-mediated photolysis is not cell-cycle dependent (Manna and Sieber, 1985). It kills both resting and cycling cells. In this regard, MC540-mediated photolysis is a valuable complement to cell-cycle specific cytotoxic drugs. (3) There is a large differential in sensitivity between normal pluripotent hematopoietic stem cells and leukemia and neuroblastoma cells. (4) The mechanism of action of MC540-mediated photolysis is different from that of lectins, antibodies and most cytotoxic drugs. MC540 binds to the lipid portion of the plasma membrane and membrane lipids are probably a primary target of the toxic photoproducts. Antibodies and lectins react with proteins and carbohydrates and most drugs have intracellular targets (e.g., nuclear DNA). We would therefore expect little cross-resistance if MC540-mediated photolysis were used in combination with other purging procedures.(5) The small amounts of dye that remain associated with the marrow graft and are infused into the patient are approximately 100,000-fold less than the LD(10) (in mice) and therefore unlikely to cause any harm. The outcome of the first clinical application of the technique supports this view (Sieber et al., 1986c). A better understanding of the underlying molecular mechanisms will undoubtedly lead to more effective applications of the technique and perhaps to the identification of more potent analogs of MC540.  相似文献   

10.
This paper reports on the role of endogenous and exogenous thiols in the merocyanine 540 (MC 540)-sensitized photoirradiation of L1210 leukemia cells, human erythrocytes, and human Herpes simplex virus type 1. Several measures taken to decrease the intracellular content of glutathione enhanced the cells' sensitivity to MC 540-sensitized photoirradiation while stimulation of glutathione biosynthesis or supplementation of the extracellular or extraviral thiol content decreased the photosensitivity of cells and viruses. Taken together, these data suggest that endogenous and exogenous thiols can modulate the sensitivity of cells and enveloped viruses to MC 540-sensitized photoirradiation. They also pose new questions as to the mechanism of MC 540-sensitized photolysis.  相似文献   

11.
When irradiated with broad-band visible light in the presence of merocyanine 540 (MC540), murine leukemia L1210 cells grown under selenium-deficient conditions (Se(-) cells) accumulated lipid hydroperoxides and lost viability more rapidly than selenium-satisfied controls (Se(+) cells). These findings suggest that cytoprotection against photoperoxidation and photokilling is mediated at least in part by selenoperoxidase (SePX) action. Similar protection against photoinactivation of an intrinsic membrane enzyme, the Na+,K+-ATPase, has been observed. Thus, irradiation of MC540-sensitized Se(-) cells resulted in an immediate and progressive inactivation of ouabain-sensitive Na+, K+-ATPase; by contrast, activity loss in Se(+) cells was preceded by a prominent lag. Enzyme photoinactivation in Se(-) cells was inhibited by ebselen, an SePX mimetic, confirming that SePX(s) is (are) involved in natural protection. Desferrioxamine treatment (iron sequestration/inactivation) resulted in higher hydroperoxide levels and slower Na+,K+-ATPase inactivation during MC540/light exposure, whereas ferric-8-hydroxyquinoline treatment (iron supplementation) had the opposite effect. Thus, iron appears to play an important role in both of these processes. In contrast, photoinactivation of another intrinsic enzyme in L1210 cells, acetylcholinesterase (AChE), was unaffected by selenium or iron manipulation. On the basis of these findings, we propose that lipid peroxidation plays an important role in the photoinactivation of Na+,K+-ATPase, but not AChE. This is consistent with the fact that Na+, K+-ATPase's active site lies within the membrane bilayer, whereas AChE's active site lies outside the bilayer.  相似文献   

12.
Merocyanine 540 (MC540) was activated by exposure to 514 nm laser light. The light-exposed MC540 was then mixed (in the dark) with tumor cells and normal cells to determine the antiproliferative activity. Treatment with light-exposed MC540 resulted in 70-90% tumor cell kill from different cell lines, while 85% of the normal human mononuclear cells and 41% of the granulocyte-macrophage colony forming cells (CFU-GM) survived the treatment. The observed cytotoxicity of light-exposed MC540 to the tumor cells was significantly greater (P less than 0.05) than the native MC540. Results show that tumor cell specificity and cytotoxicity in the light activated dye are retained for at least 30 days. Addition of catalase and mannitol decreased the cell kill by light-exposed compound, indicating that the observed effects may be due to reactive oxygen species. The electron micrographs of treated cells show a progression towards apoptosis in a majority of the cells. The life span of L1210 leukemia-bearing mice treated with light-exposed MC540 was prolonged compared to the untreated and native MC540 treated mice. High pressure liquid chromatography (HPLC) analysis of light-exposed material shows a completely different elution profile compared to the native compound. Results presented here show that light-exposed photoactive compounds can be used without further illumination and may have significant clinical applications. Photoactive mechanisms dependent on events other than short-lived transient elevations in energy or singlet oxygen must be invoked to explain the reported cytotoxicity.  相似文献   

13.
This paper examines the relationship between lipid composition, plasma membrane fluidity, expression of dye binding sites, and susceptibility to merocyanine 540 (MC540)-sensitized irradiation in L1210 leukemia cells. Reducing the cells' cholesterol content by exchange diffusion with phosphatidylcholine liposomes or by inhibiting its biosynthesis with 25-hydroxycholesterol enhanced plasma membrane fluidity, the expression of dye binding sites, and the cells' susceptibility to MC540-sensitized irradiation. Conversely, if the cholesterol content was enhanced by exchange diffusion with cholesterol:phosphatidylcholine liposomes, the cells' susceptibility to MC540-sensitized irradiation was decreased. However, contrary to expectations, dye-binding was slightly enhanced and plasma membrane fluidity remained unchanged. Growing the cells in fatty acid-supplemented medium had profound effects on their lipid composition. Cells enriched in polyunsaturated fatty acids had more fluid plasma membranes. However, dye-binding was not significantly affected and photosensitivity was slightly reduced. These results suggest that cholesterol is one, but probably not the only, determinant of the expression of cellular dye binding sites and, consequently, the cell's susceptibility to MC540-sensitized irradiation. By contrast, plasma membrane fluidity does not appear to play a major role in the regulation of dye-binding site expression.  相似文献   

14.
High-dose chemotherapy combined with autologous transplantation using bone marrow or peripheral blood-derived stem cells (PBSC) is now widely used in the treatment of hematologic malignancies as well as some solid tumors like breast cancer (BC). However, some controversial results were recently obtained in the latter case. The presence of malignant cells in the autograft has been associated with the recurrence of the disease, and purging procedures are needed to eliminate this risk. The aim of this study was to evaluate the potential of the photosensitizer 4,5-dibromorhodamine methyl ester (TH9402), a dibrominated rhodamine derivative, to eradicate multiple myeloma (MM) and BC cell lines, while sparing more than 50% of normal pluripotential blood stem cells from healthy volunteers. The human BC MCF-7 and T-47D and MM RPMI 8226 and NCI-H929 cell lines were used to optimize the photodynamic purging process. Cell concentration and the cell suspension thickness as well as the dye and light doses were varied in order to eventually treat 1-2 L of apheresis. The light source consisted of two fluorescent scanning tubes emitting green light centered about 515 nm. The cellular uptake of TH9402 was measured during the incubation and washout periods and after photodynamic treatment (PDT) using spectrofluorometric analysis. The limiting dilution assay showed that an eradication rate of more than 5 logs is obtained when using a 40 min incubation with 5-10 microM dye followed by a 90 min washout period and a light dose of 5-10 J/cm2 (2.8 mW/cm2) in all cell lines. Agitating the 2 cm thick cell suspension containing 20 x 10(6) cells/mL during PDT was essential for maximal photoinactivation. Experiments on mobilized PBSC obtained from healthy volunteers showed that even more drastic purging conditions than those found optimal for maximal eradication of the malignant cell lines were compatible with a good recovery of hematopoietic progenitors cells. The absence of significant toxicity towards normal hematopoietic stem cells, combined with the 5 logs eradication of cancer cell lines induced by this procedure suggests that TH9402 offers an excellent potential as an ex vivo photodynamic purging agent for autologous transplantation in MM and BC treatment.  相似文献   

15.
Subcellular localization of photosensitizers is thought to play a critical role in determining the mode of cell death after photodynamic treatment (PDT) of leukemia cells. Using confocal laser scanning microscopy and fluorescent organelle probes, we examined the subcellular localization of merocyanine 540 (MC540) in the murine myeloid leukemia M1 and WEHI 3B (JCS) cells. Two patterns of localization were observed: in JCS cells, MC540 was found to localize on the plasma membrane and mitochondria; and in M1 leukemia cells, MC540 was found to localize on lysosomes. The relationship between subcellular localization of MC540 and PDT-induced apoptosis was investigated. Apoptotic cell death, as judged by the formation of apoptotic nuclei, was observed 4 h after irradiation in both leukemia cell lines. Typical ladders of apoptotic DNA fragments were also detected by DNA gel electrophoresis in PDT-treated JCS and M1 cells. At the irradiation dose of 46 kJ/m2 (LD90 for JCS and LD86 for M1 cells), the percentage of apoptotic JCS and M1 cells was 78 and 38%, respectively. This study provided substantial evidence that MC540 localized differentially in the mitochondria, and the subsequent photodamage of the organelle played an important role in PDT-mediated apoptosis in myeloid leukemia cells.  相似文献   

16.
ANTIVIRAL ACTIVITY OF MEROCYANINE 540   总被引:1,自引:0,他引:1  
Abstract Simultaneous exposure to the lipophilic dye merocyanine 540 (MC 540) and white light inactivates several enveloped viruses. The same treatment appears to have little or no effect on pluripotent hematopoietic stem cells, mature red cells, and mature leukocytes. At least some components of the clotting system are spared, too. The molecular basis of the virucidal effect of MC 540 and light is not yet completely understood. Based on what is known about the interactions of MC 540 with cells and artificial membranes, it seems likely that MC 540 binds to and damages the viral envelope. MC 540-mediated photosensitization may have implications for the sterilization of bone marrow and blood products, the preparation of vaccines, and selected areas of antiviral therapy.  相似文献   

17.
Elemental selenium generated by the photobleaching of selenomerocyanine dyes forms conjugates with serum albumin and serum lipoproteins that are toxic to leukemia and selected solid tumor cells but well tolerated by normal CD34-positive hematopoietic stem and progenitor cells. Serum albumin and lipoproteins act as Trojan horses that deliver the cytotoxic entity (elemental selenium) to tumor cells as part of a physiological process. They exploit the fact that many tumors have an increased demand for albumin and/or low-density lipoprotein. Se(0)-protein conjugates are more toxic than selenium dioxide, sodium selenite, selenomethionine, or selenocystine. They are only minimally affected by drug resistance mechanism, and they potentiate the cytotoxic effect of ionizing radiation and several standard chemotherapeutic agents. The cytotoxic mechanism of Se(0)-protein conjugates is not yet fully understood. Currently available data are consistent with the notion that Se(0)-protein conjugates act as air oxidation catalysts that cause a rapid depletion of intracellular glutathione and induce apoptosis. Drugs modeled after our Se(0)-protein conjugates may prove useful for the local and/or systemic therapy of cancer.  相似文献   

18.
The in vitro suitable action distance between umbilical cord blood-derived hematopoietic stem/progenitor cells and its feeder cell, human adipose-derived stem cells, during their co-culture, was investigated through a novel transwell co-culture protocol, in which the distance between the two culture chambers where each cell type is growing can be adjusted from 10 to 450 μm. The total cell number was determined with a hemacytometer, and the cell morphology was observed under an inverted microscope each day. After 7 days of co-culture, the fold-expansion, surface antigen expression of CD34(+) and CFU-GM assay of the hematopoietic mononuclear cells (MNCs) were analyzed. The results showed that there was an optimal communication distance at around 350 μm between both types of stem cells during their in vitro co-culture. By using this distance, the UCB-MNCs and CD34(+) cells were expanded by 15.1?±?0.2 and 5.0?±?0.1-fold, respectively. It can therefore be concluded that the optimal action distance between stem cells and their supportive cells, when cultured together for 7 days, is of around 350 μm.  相似文献   

19.
Abstract

Elemental selenium generated by the photobleaching of selenomerocyanine dyes forms conjugates with serum albumin and serum lipoproteins that are toxic to leukemia and selected solid tumor cells but well tolerated by normal CD34-positive hematopoietic stem and progenitor cells. Serum albumin and lipoproteins act as Trojan horses that deliver the cytotoxic entity (elemental selenium) to tumor cells as part of a physiological process. They exploit the fact that many tumors have an increased demand for albumin and/or low-density lipoprotein. Se(0)-protein conjugates are more toxic than selenium dioxide, sodium selenite, selenomethionine, or selenocystine. They are only minimally affected by a drug resistance mechanism, and they potentiate the cytotoxic effect of ionizing radiation and several standard chemotherapeutic agents. The cytotoxic mechanism of Se(0)-protein conjugates is not yet fully understood. Currently available data are consistent with the notion that Se(0)-protein conjugates act as air oxidation catalysts that cause a rapid depletion of intracellular glutathione and induce apoptosis. Drugs modeled after our Se(0)-protein conjugates may prove useful for the local and/or systemic therapy of cancer.  相似文献   

20.
The photodynamic effects of temoporfin (meso-tetrahy-droxyphenylchlorin, mTHPC) and merocyanine 540 (MC540) in murine myeloid leukemia M1 and WEHI 3B (JCS) cells were compared. The mTHPC was found to be more potent and selective. At a lethal dosage of 90% killing (LD90), only 1.3 μM of mTHPC and 4.2 kj/m2 of light irradiation was required, which was a 20-fold lower drug concentration and 11-fold smaller light dose than that required when using MC540. Meanwhile, three times less, or 15%, of the coincubated erythrocytes were destroyed by mTHPC than by MC540. Confocal micrographs showed that both drugs accumulated diffusely inside the cytoplasm in a very similar fashion, but mTHPC induced a more extensive apoptosis in photosensitized JCS cells. For example, at LD90, mTHPC practically killed all JCS cells via apoptosis and cleaved the DNA to extremely small 150 base-pair fragments. In contrast, among the JCS cells killed by MC540, about 88% died via apoptosis and large DNA fragments were abundant. Relative to MC540, the ability of mTHPC to trigger large-scale and thorough apoptosis in leukemia cells may help explain its potency and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号