首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

We present the first Chandra X-ray observations of the H2O megamaser galaxy Mrk1210 (UGC4203), a Seyfert 2 galaxy at an approximate distance of D ~ 57.6 Mpc. The Chandra X-ray image, with by far the highest angular resolution (~1″), displays an unresolved compact core toward the nuclear region of Mrk1210. Comparisons with the previous X-ray observations in the nuclear emission and the spectral shape indicate a fairly stable phase between 2001 (BeppoSAX and XMM-Newton) and 2004 (Chandra) after a dramatic variation since 1995 (ASCA). The best-fit model of Chandra X-ray spectrum consists of two components. The soft scattered component can be best fitted by a moderately absorbed power-law model adding a spectral line at ~0.9 keV (possibly a Ne-Kα fluorescent line), while the hard nuclear component can be well reproduced by a heavily absorbed power-law model (N H ~ 2×1023 cm?2) with an additional line at ~6.19 keV (close to the Fe-Kα fluorescent line). The derived absorption-corrected X-ray luminosity implies that the dramatic variation of spectral properties is caused by significant changes of the absorbing column density along the line-of-sight, while the intrinsic nuclear X-ray luminosity remains stable. In this case, the absorbers should be anisotropic and its size can be constrained to be less than 0.0013 pc. In addition, we also estimate the mass of central engine, the disk radius and the accretion rate of the accretion disk to be 107.12±0.31 M , ~1 pc and 0.006, respectively.

  相似文献   

2.
Summary By using a fully relativistic model for the spectral line produced by a Keplerian disk orbiting a Schwarzschild black hole, we study the temporal behaviour of the line intensity in response to a continuum variation at an extended central source. We compare our results with the observed properties of the Seyfert galaxy NGC 6814, whose X-ray flux has been observed to decrease by a factor of two in ≈ 50 s, while the iron line intensity variations lag continuum variations by 250 s, at the most. Taking the stationary values of the iron line centroid energy and width, and assuming that the line comes from high-ionisation stages of iron (as several indications suggest) we derive that the inner radius of the line-emitting region is between 6 and 30r g (r g =GM/c 2), the inclination is ≤40°, while the mass of the central object is constrained to 8·104 L 43<M<3.9·106 M (L 43 is the accretion luminosity in units of 1043 erg s−1). Paper presented at the 6th Cosmic Physics National Conference, Palermo, 3–7 November 1992. Affiliated to ICRA.  相似文献   

3.
Gravitational recoil of a gigantic black hole (M∼108–9 M) formed in the nonspherical collapse of the nuclear part of a typical galaxy can take place with an appreciable speed as a consequence of the anisotropic emission of gravitational radiation. Accretion of gaseous matter during its flight through the galaxy results in the formation of a glowing shock front. The accompanying stellar captures can lead to the formation of an accretion disk-star system about the hole. Consequently, the hole can become “luminous” enough to be observable after it emerges out of the galaxy. The phenomenon seems to have an importance in relation to the observations of quasar-galaxy association in a number of cases.  相似文献   

4.
The nuclear orientation of14N is investigated after the scattering of14N+ ions with energies ranging from 7 to 350 keV from an Si(111)-surface under grazing angles of incidence. For projectile energies above 50 keV, we find a constant nuclear orientationP 1=〈I z 〉/I∼22%, whereas towards lower energiesP I shows a pronounced decrease. Our measurements provide important information in the application of surface scattering to obtain nuclear polarized beams.  相似文献   

5.
The total (p, n) reaction cross section for48Ca has been measured as a function of proton energy in the energy range 1.885 to 5.100 MeV with an overall resolution of ∼ 2 keV and in ∼ 5 keV energy steps. The fluctutions in fine resolution data have been analysed to determine the average coherence width 〈Γ〉. The excitation function averaged over large energy intervals has been analyzed in terms of the optical model. The isobaric analogue resonances atE p ∼ 1.95 and 4 MeV have been shape-analyzed to extract the proton partial width and the spectroscopic factorS n . A comparison of the gross structures observed in ∼ 55 keV averaged excitation function with the predictions of Izumo’s partial equilibrium model has also been made.  相似文献   

6.
Radio galaxies are divided into two groups according to their luminosities at 178 MHz, namely Fanaroff-Riley type Is (FRIs) and Fanaroff-Riley type IIs (FRIIs) with FRIs showing lower radio luminosities than FRIIs. In this paper, the X-ray data are compiled for 183 radio galaxies (61 FRIs and 122 FRIIs), from the available literature, for the analysis of the X-ray properties. The 1 keV X-ray luminosities are calculated and discussed for the two groups, and an averaged X-ray luminosity of logL X1 keV = 41.30±2.51 erg·s−1·keV−1 is found for FRIs, which is lower than that for FRIIs, logL X1 keV = 43.39±3.06 erg·s−1·keV−1. A Kolmogorov-Smirnov (K-S) test indicates that the probability for the X-ray luminosity distributions of the two groups to be from the same parent distribution is 1.44×10−10. We also discuss the origin and the mechanism of the X-ray emission for FRIs and FRIIs. Supported by the National Natural Science Foundation of China (Grant Nos. 10573005 and 10633010) and the National Basic Research Program of China (Grant No. 2007CB815405)  相似文献   

7.
A bremsstrahlung X-ray source (hv ≤ 600 keV) was developed on the basis of CW electron LINAC. It provides an absorbed dose rate of ∼30 Gy/s within an area of ∼2.5 cm2. The radiation stability of quartz glasses and crystals for excimer lasers windows was investigated.  相似文献   

8.
The spectral structure of backward stimulated scattering from a 10 cm-long CS2-liquid cell is investigated by using Q-switched 10-ns and 532-nm laser pulses with different spectral linewidths. Under a narrow spectral line (∼0.1 cm−1) pump condition, very strong sharp lines near the pump wavelength (λ 0) position and the first-order stimulated Raman scattering (λ s1) position can be observed. However, under a wide line (≈1 cm−1) pump condition, only a strong and superbroadening spectral band can be observed mainly in the red-shift side of the pump wavelength. The different spectral features under these two conditions can be explained by a competition between stimulated Brillouin, Raman, and Rayleigh-Kerr scattering. Under both pump conditions, the broadening spectral distributions are not consistent with the predictions given by stimulated Rayleigh-wing scattering theories, but can be interpreted well utilizing the theoretical model of stimulated Rayleigh-Kerr scattering. Zh. éksp. Teor. Fiz. 112, 1563–1573 (November 1997) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.  相似文献   

9.
An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain — matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see “a black hole”, an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 – 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200–400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be related with the temperature of the bulk flow. In other words the effect of the bulk Comptonization compared to the thermal one is getting stronger when the plasma temperature drops below 10 keV. We clearly demonstrate that these spectra emerging from the converging inflow are a inevitable stamp of the BHS where the strong gravitational field dominates the pressure forces.  相似文献   

10.
It has been experimentally demonstrated that the use of the effect of significant narrowing of the fluorescence spectrum from a nanocell that contains a column of atomic Rb vapor with a thickness of L = 0.5λ (where λ = 794 nm is the wavelength of laser radiation, whose frequency is resonant with the atomic transition of the D 1 line of Rb) and the application of narrowband diode lasers allow the spectral separation and investigation of changes in probabilities of optical atomic transitions between levels of the hyperfine structure of the D 1 line of 87Rb and 85Rb atoms in external magnetic fields of 10–2500 Gs (for example, for one of transitions, the probability increases ∼17 times). Small column thicknesses (∼390 nm) allow the application of permanent magnets, which facilitates significantly the creation of strong magnetic fields. Experimental results are in a good agreement with the theoretical values. The advantages of this method over other existing methods are noted. The results obtained show that a magnetometer with a local spatial resolution of ∼390 nm can be created based on a nanocell with the column thickness L = 0.5λ. This result is important for mapping strongly inhomogeneous magnetic fields.  相似文献   

11.
The parameters of the σ-ω-ρ model in the relativistic mean-field theory with nonlinear σ-meson self-interaction are determined by nuclear-matter properties, which are taken as those extracted by fits to data based on nonrelativistic nuclear models. The values of the relevant parameters are C σ 2∼ 94, C ω 2∼ 32, C ρ 2∼ 26, b∼ - 0.09, c∼ 1, and the σ-meson mass m σ∼ 370 MeV, while the value of the calculated nuclear- surface thickness is t∼ 1.4 fm. The field system is shown to be stable, since the σ-meson self-interaction energy is a lower bound in this whole parameter region with positive c. On the other hand, the effective nucleon mass M* is larger than 0.73M, if the symmetry incompressibility Ks is assumed to be negative and the nuclear-matter incompressibility K0 is kept less than 300 MeV. Received: 27 June 2001 / Accepted: 5 October 2001  相似文献   

12.
Temporal, spatial and spectral characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode are presented. Electrons from a laser-produced aluminium plasma were accelerated towards a conical point tip titanium anode to generate K-shell x-ray radiation. Approximately 1010 photons/pulse were generated in x-ray pulses of ∼18 to ∼28 ns duration from a source of ∼300 μm diameter, at = 4.51 keV (K α emission of titanium), with a brightness of ∼1020 photons/cm2/s/sr. This was sufficient to record single-shot x-ray radiographs of physical objects on a DEF-5 x-ray film kept at a distance of up to ∼10 cm.  相似文献   

13.
Y. Zou  N. Inoue 《Ionics》2005,11(5-6):333-342
The solid solutions La4/3−yLi3yTi2O6 (y=0.09∼0.33) have been studied by complex impedance spectroscopy, X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) methods. The ionic conductivity shows a maximum value at around y=0.21, and keeps high values at high y concentrations. The XRD patterns show a single phase for all concentration. The crystal structure is orthorhombic with space groupPmmm for y=0.09∼0.15 and tetragonal with space groupP4/mmm for y=0.17∼0.33. The7Li static NMR spectra show a main central peak with a Lorenzian shape for y=0.09∼0.21. The central peak is divided into two parts for y=0.23∼0.33. The narrow intense peak is a mobile component due to mobile ions, and a small broad central peak is due to less mobile lithium ions which contribute to immobile component. The7Li MAS NMR spectra show negative chemical shifts which decrease with increasing y concentration. In this paper, we discuss the conduction mechanism and the structure from the analysis of conductivity, lattice parameters, occupation, atomic positions and the7Li static/MAS NMR spectra.  相似文献   

14.
Extensive multi-band afterglow data are available for GRB 980703. Especially, its radio afterglow was very bright and was monitored until more than 1000 days after the trigger time. Additionally, there is no obvious special feature, i.e., no rebrightenings, no plateau, and no special steep decay or slow decay in the multi-band afterglow light curves. All these conditions make GRB 980703 a precious sample in gamma-ray burst research. Here we use the observational data of GRB 980703 to test the standard fireball model in depth. It is found that the model can give a satisfactory explanation to the multi-band and overall afterglow light curves. The beaming angle of GRB 980703 is derived as ∼ 0.23 radian, and the circum-burst medium density is ∼ 27 cm−3. The total isotropic equivalent kinetic energy of the ejecta is ∼ 3.8 × 1052 ergs. A rest-frame extinction of A V ∼ 2.5 mag in the host galaxy is also derived.  相似文献   

15.
Kinetic energy distributions of muonic hydrogen atoms μp(1S) have been obtained by means of a time-of-flight technique for hydrogen gas pressures between 4 and 64 hPa. A high energy component of ∼900 eV observed in the data is interpreted as the signature of long-lived μp(2S) atoms, which are quenched in a non-radiative process leading to the observed high energy: the collision of a thermalized μp(2S) atom with a hydrogen molecule H2 results in the resonant formation of a {[(ppμ)+]*pee}* molecule. Then the (ppμ)+ complex undergoes Coulomb de-excitation and the ∼1.9 keV excitation energy is shared between a μp(1S) atom and one proton. The preliminary analysis of the time spectra gives a long-lived μp(2S) population of ∼1% of all stopped muons, and a quenching rate of ∼4⋅1011 s−1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Summary Over the last few years, GINGA observations of several bright Seyfert galaxies have revealed the existence of a new flat component in the X-ray spectrum of these objects above 8 keV. This component (the ?high-energy bump?) is probably produced by the reprocessing of the intrinsic emission (through Compton scattering and photoelectric absorption) by a very thick and cold medium in the environment of the central source, such as an accretion disk. An alternative explanation is provided by partial covering and reprocessing by thick clouds, whose existence is supported by the latest results on the broad line region obtained by line reverberation measurements in the optical-ultraviolet band. The presence of iron fluorescent lines at 6.4 keV with an equivalent width ≅ (100÷200) eV in all those galaxies supports both scenarios. The implications of the presence of the high-energy bump on the spectral shape of the intrinsic continuum, the level of the soft X-ray excess and the X-ray background are briefly pointed out. Paper presented at the V Cosmic Physics National Conference, S. Miniato, November 27–30, 1990.  相似文献   

17.
A class of continuum models with a critical end point is considered whose Hamiltonian [φ,ψ] involves two densities: a primary order-parameter field, φ, and a secondary (noncritical) one, ψ. Field-theoretic methods (renormalization group results in conjunction with functional methods) are used to give a systematic derivation of singularities occurring at critical end points. Specifically, the thermal singularity ∼ | t|2 - α of the first-order line on which the disordered or ordered phase coexists with the noncritical spectator phase, and the coexistence singularity ∼ | t|1 - α or ∼ | t|β of the secondary density <ψ> are derived. It is clarified how the renormalization group (RG) scenario found in position-space RG calculations, in which the critical end point and the critical line are mapped onto two separate fixed points CEP * and λ *, translates into field theory. The critical RG eigenexponents of CEP * and λ * are shown to match. CEP * is demonstrated to have a discontinuity eigenperturbation (with eigenvalue y = d), tangent to the unstable trajectory that emanates from CEP * and leads to λ *. The nature and origin of this eigenperturbation as well as the role redundant operators play are elucidated. The results validate that the critical behavior at the end point is the same as on the critical line. Received 18 January 2001  相似文献   

18.
The dielectron widths of ψ(4040), ψ(4160), and ψ(4415), and their ratios are shown to be in good agreement with experiment, if in all cases the S-D mixing with a large mixing angle θ ≅ 34° is taken. Arguments are presented why continuum states give small contributions to the wave functions at the origin. We find that the Y (4360) resonance, considered as a pure 3 3 D 1 state, would have very small dielectron width, Γ ee (Y (4360)) = 0.060 keV. On the contrary, for large mixing between the 4 3 S 1 and 3 3 D 1 states with the mixing angle θ = 34.8°, Γ ee (ψ(4415)) = 0.57 keV coincides with the experimental number, while a second physical resonance, probably Y (4360), has also a rather large Γ ee (Y (∼4400)) = 0.61 keV. For the higher Y (4660) resonance, considered as a pure 5 3 S 1 state, we predict the dielectron width Γ ee (Y (4660)) = 0.70 keV, but it becomes significantly smaller, namely 0.31 keV, if the mixing angle between the 5 3 S 1 and 4 3 D 1 states has the characteristic value θ = 34°. The mass and dielectron width of the 6 3 S 1 charmonium state are calculated. The text was submitted by the authors in English.  相似文献   

19.
20.
We show that the dynamics of disordered charge density waves (CDWs) and spin density waves (SDWs) is a collective phenomenon. The very low temperature specific heat relaxation experiments are characterized by: (i) “interrupted” ageing (meaning that there is a maximal relaxation time); and (ii) a broad power-law spectrum of relaxation times which is the signature of a collective phenomenon. We propose a random energy model that can reproduce these two observations and from which it is possible to obtain an estimate of the glass cross-over temperature (typically T g≃ 100-200 mK). The broad relaxation time spectrum can also be obtained from the solutions of two microscopic models involving randomly distributed solitons. The collective behavior is similar to domain growth dynamics in the presence of disorder and can be described by the dynamical renormalization group that was proposed recently for the one dimensional random field Ising model [D.S. Fisher, P. Le Doussal, C. Monthus, Phys. Rev. Lett. 80, 3539 (1998)]. The typical relaxation time scales like ∼τexp(T g/T). The glass cross-over temperature Tg related to correlations among solitons is equal to the average energy barrier and scales like T g∼ 2xξΔ. x is the concentration of defects, ξ the correlation length of the CDW or SDW and Δ the charge or spin gap. Received 12 December 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号