首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On‐line LC‐EC/ESI‐MS has been established as a fast and simple method to mimic some types of oxidation reaction of various drugs and to study the formation and structure of the resulting products. This technique has been applied to a 2,6,9‐trisubstituted purine, R‐roscovitine, which is known to be an inhibitor of some cyclin‐dependent kinases (CDKs) and a potential anticancer drug. Oxidation of R‐roscovitine in an electrochemical cell (EC), operated under various conditions, resulted in appearance of 6 major products. These were further analyzed by high‐resolution mass spectrometry, their structures were elucidated by accurate mass measurement and compared to previously identified R‐roscovitine in vitro/in vivo metabolites. Although none of the observed products was structurally identical to those identified previously in vitro/in vivo, all of them, except for the methoxylated products, resembled similarity due to appearing through the same reaction type. R‐roscovitine in the EC cell underwent N‐dealkylation of the isopropyl moiety, hydroxylation of the aromatic side‐chain, dihydroxylation, methoxylation and dimer formation. The hydroxylation product was identified as Olomoucine II, a R‐roscovitine derivative, which displays 10‐times higher CDK‐inhibiting activity than R‐roscovitine and the occurrence of which, as R‐roscovitine product, has not yet been observed in vitro/in vivo.  相似文献   

2.
The key in vivo metabolites of a drug play an important role in its efficacy and toxicity. However, due to the low content and instability of these metabolites, they are hard to obtain through in vivo methods. Electrochemical reactions can be an efficient alternative to biotransformation in vivo for the preparation of metabolites. Accordingly, in this study, the metabolism of Z‐ligustilide was investigated in vitro by electrochemistry coupled online to mass spectrometry. This work showed that five oxidation products of the electrochemical reaction were detected and that two of the oxidation products (senkyunolide I and senkyunolide H) were identified from liver microsomal incubation as well. Furthermore, after intragastric administration of Z‐ligustilide in rats, senkyunolide I and senkyunolide H were detected in the rat plasma and liver, while 6,7‐epoxyligustilide, a key intermediate metabolite of Z‐ligustilide, was difficult to detect in vivo. By contrast, 6,7‐epoxyligustilide was obtained from the electrochemical reaction. In addition, for the first time, 6 mg of 6,7‐epoxyligustilide was prepared from 120 mg of Z‐ligustilide. Therefore, electrochemical reactions represent an efficient laboratory method for preparing key drug metabolites.  相似文献   

3.
In this report, the in vitro metabolism of Strychnos alkaloids was investigated using liquid chromatography/high‐resolution mass spectrometry for the first time. Strychnine and brucine were selected as model compounds to determine the universal biotransformations of the Strychnos alkaloids in rat liver microsomes. The incubation mixtures were separated by a bidentate‐C18 column, and then analyzed by on‐line ion trap/time‐of‐flight mass spectrometry. With the assistance of mass defect filtering technique, full‐scan accurate mass datasets were processed for the discovery of the related metabolites. The structural elucidations of these metabolites were achieved by comparing the changes in accurate molecular masses, calculating chemical component using Formula Predictor software and defining sites of biotransformation based upon accurate MSn spectral information. As a result, 31 metabolites were identified, of which 26 metabolites were reported for the first time. These biotransformations included hydroxylation, N‐oxidation, epoxidation, methylation, dehydrogenation, de‐methoxylation, O‐demethylation, as well as hydrolysis reactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The metabolites formed via the major metabolic pathways of haloperidol in liver microsomes, N‐dealkylation and ring oxidation to the pyridinium species, were produced by electrochemical oxidation and characterized by ultra‐performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI‐MS). Liver microsomal incubations and electrochemical oxidation in the presence of potassium cyanide (KCN) resulted in two diastereomeric cyano adducts, proposed to be generated from trapping of the endocyclic iminium species of haloperidol. Electrochemical oxidation of haloperidol in the presence of KCN gave a third isomeric cyano adduct, resulting from trapping of the exocyclic iminium species of haloperidol. In the electrochemical experiments, addition of KCN almost completely blocked the formation of the major oxidation products, namely the N‐dealkylated products, the pyridinium species and a putative lactam. This major shift in product formation by electrochemical oxidation was not observed for the liver microsomal incubations where the N‐dealkylation and the pyridinium species were the major metabolites also in the presence of KCN. The previously not observed dihydropyridinium species of haloperidol was detected in the samples, both from electrochemical oxidation and the liver microsomal incubations, in the presence of KCN. The presence of the dihydropyridinium species and the absence of the corresponding cyano adduct lead to the speculation that an unstable cyano adduct was formed, but that cyanide was eliminated to regenerate the stable conjugated system. The formation of the exocyclic cyano adduct in the electrochemical experiments but not in the liver microsomal incubations suggests that the exocyclic iminium intermediate, obligatory in the electrochemically mediated N‐dealkylation, may not be formed in the P450‐catalyzed reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The oxidation behavior of DNA and RNA nucleotides is studied by an on‐line set‐up consisting of an electrochemical thin‐layer cell (EC) directly coupled to electrospray ionization mass spectrometry (ESI‐MS). This set‐up allows the generation of nucleotide oxidation products in the electrochemical cell at increasing potentials. Moreover, the products are determined directly, without isolation or derivatization steps, by electrospray ionization time of flight mass spectrometry (ESI‐ToF/MS). The dependence of the mass spectra on the applied potential is displayed as ‘mass voltammograms’. An advanced set‐up, consisting of the electrochemical cell coupled to electrospray ionization tandem mass spectrometry (EC/ESI‐MS/MS) allows further structure elucidation based on fragmentation experiments. The electrochemical conversion is performed using a boron doped diamond (BDD) working electrode, which is known to generate hydroxyl radicals at high potentials. The capability of the EC‐MS system to generate highly relevant oxidation products which also occur upon oxidative damage in vivo is demonstrated in this study by the formation of well known biomarkers for DNA damage, including 2′‐deoxy‐8‐oxo‐guanosine 5′‐monophosphate.  相似文献   

6.
(+)‐Catechin, a potential beneficial compound to human health, is widely distributed in plants and foods. A high‐performance liquid chromatography with diode array detector and combined with electrospray ionization ion trap time‐of‐flight multistage mass spectrometry method was applied to profile and identify the metabolites of (+)‐catechin in rats and to study the distribution of these metabolites in rat organs for the first time. In total, 51 phase II metabolites (44 new) and three phase I metabolites were tentatively identified, comprising 16 (+)‐catechin conjugates, 14 diarylpropan‐2‐ol metabolites, 6 phenyl valerolactone metabolites and 18 aromatic acid metabolites. Further, 19 phase II metabolites were new compounds. The in vivo metabolic reactions of (+)‐catechin in rats were found to be ring‐cleavage, sulfation, glucuronidation, methylation, dehydroxylation and dehydrogenation. The numbers of detected metabolites in urine, plasma, small intestine, kidney, liver, lung, heart, brain and spleen were 53, 23, 27, 9, 7, 5, 3, 2 and 1, respectively. This indicated that small intestine, kidney and liver were the major organs for the distribution of (+)‐catechin metabolites. In addition, eight metabolites were found to possess bioactivities according to literature. These results are very helpful for better comprehension of the in vivo metabolism of (+)‐catechin and its pharmacological actions, and also can give strong indications on the effective forms of (+)‐catechin in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A visible light‐induced photocatalytic dehydrogenation/6π‐cyclization/oxidation cascade converts 1‐(nitromethyl)‐2‐aryl‐1,2,3,4‐tetrahydroisoquinolines into novel 12‐nitro‐substituted tetracyclic indolo[2,1‐a]isoquinoline derivatives. Various photocatalysts promote the reaction in the presence of air and a base, the most efficient being 1‐aminoanthraquinone in combination with K3PO4. Further, the 12‐nitroindoloisoquinoline products can be accessed directly from C1‐unfunctionalized 2‐aryl‐1,2,3,4‐tetrahydroisoquinolines by extending the one‐pot protocol with a foregoing photocatalytic cross‐dehydrogenative coupling reaction, resulting in a quadruple cascade transformation.  相似文献   

8.
The electrochemical initiated heterocoupling of 3‐methylcatechol and n‐hexylamine was investigated. The oxidation of 3‐methylcatechol was performed in an electrochemical flow cell with glassy carbon as the working electrode. As a result, the two‐electron, two‐proton oxidised chinone intermediate undergoes a C‐N coupling reaction in the presence of an amine (Michael addition). This mono coupling product can undergo a second two‐electron, two‐proton oxidation depending on acidic or basic conditions and substrate ratios. This flow cell was coupled on‐line with electrospray ionisation mass spectrometry to identify the possible coupling products. Higher substrate concentrations were performed off‐line as first scale‐up experiments in a two‐step procedure.  相似文献   

9.
Since 2012, several cannabimimetic indazole and indole derivatives with valine amino acid amide residue have emerged in the illicit drug market, and have gradually replaced the old generations of synthetic cannabinoids (SCs) with naphthyl or adamantine groups. Among them, ADB‐FUBICA [N‐(1‐amino‐3,3‐dimethyl‐1‐oxobutan‐2‐yl)‐1‐(4‐fluorobenzyl)‐1H–indole‐3‐carboxamide], AB‐FUBICA [N‐(1‐amino‐3‐methyl‐1‐oxobutan‐2‐yl)‐1‐(4‐fluorobenzyl)‐1H–indole‐3‐carboxamide], AB‐BICA [N‐(1‐amino‐3‐methyl‐1‐oxobutan‐2‐yl)‐1‐benzyl‐1H‐indole‐3‐carboxamide] and ADB‐BICA [N‐(1‐amino‐3,3‐dimethyl‐1‐oxobutan‐2‐yl)‐1‐benzyl‐1H‐indole‐3‐carboxamide] were detected in China recently, but unfortunately no information about their in vitro human metabolism is available. Therefore, biomonitoring studies to screen their consumption lack any information about the potential biomarkers (e.g. metabolites) to target. To bridge this gap, we investigated their phase I metabolism by incubating with human liver microsomes, and the metabolites were identified by ultra‐performance liquid chromatography–high resolution–tandem mass spectrometry. Metabolites generated by N‐dealkylation and hydroxylation on the 1‐amino‐alkyl moiety were found to be predominant for all these four substances, and others which underwent hydroxylation, amide hydrolysis and dehydrogenation were also observed in our investigation. Based on our research, we recommend that the N‐dealkylation and hydroxylation metabolites are suitable and appropriate analytical markers for monitoring their intake.  相似文献   

10.
An extensive study of metabolites present in Excoecaria agallocha Linn . led to the isolation of three new ent‐labdane‐type diterpenoids, named agallochaexcoerins A–C ( 1 – 3 ), besides three known compounds. The skeleton present in compound 1 is rather unusual, containing of a seven‐membered lactone. The structures were elucidated on the basis of spectroscopic studies and comparison with known related compounds. The isolated compounds 1 – 6 were not active against Raw 264.7 (macrophage‐like), K 562 (leukemia), and COLO 205 (colon) human carcinoma cell lines.  相似文献   

11.
An ultra‐high‐performance liquid chromatography mass spectrometry method was established to detect and identify the chemical constituents of Zi Shen Formula (ZSF) and its metabolites in serum, urine and feces, after oral administration to rats. A total of 68 compounds were characterized in ZSF extracts. In vivo, 38 prototype components and 32 metabolites of ZSF were tentatively identified in rat serum, urine and feces. Seven metabolic pathways including demethylation, hydroxylation, oxidation, sulfation, glucuronidation, methylation and de‐caffeoyl were proposed to be involved in the generation of these metabolites. It was found that glucuronidation, methylation and demethylation were the major metabolic processes of alkaloids, while demethylation, methylation, sulfation and de‐caffeoyl were the major metabolic pathways of phenylethanoid glycosides. The main metabolic pathways of steroidal saponins were oxidation and isotype reactions. These findings are significant for our understanding of the metabolism of ZSF. The proposed metabolic pathways of bioactive components might be crucial for further studies of the mechanisms of action and pharmacokinetic evaluations of ZSF.  相似文献   

12.
Cnidilin is an active natural furocoumarin ingredient originating from well‐known traditional Chinese medicine Radix Angelicae Dahuricae . In the present study, an efficient approach was developed for the screening and identification of cnidilin metabolites using ultra‐high‐performance liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry. In this approach, an on‐line data acquisition method multiple mass defect filter combined with dynamic background subtraction was developed to trace all probable metabolites. Based on this analytical strategy, a total of 24 metabolites of cnidilin were detected in human liver microsomal incubation samples and the metabolic pathways were proposed. The results indicated that oxidation was the main biotransformation route for cnidilin in human liver microsomes. In addition, the specific cytochrome P450 (CYP) enzymes involved in the metabolism of cnidilin were identified using chemical inhibition and CYP recombinant enzymes. The results showed that CYP1A2 and CYP3A4 might be the major enzymes involved in the metabolism of cnidilin in human liver microsomes. The relationship between cnidilin and the CYP450 enzymes could provide us a theoretical basis of the pharmacological mechanism.  相似文献   

13.
Ginsenoside compound K (CK) is an active metabolite of ginsenoside and has been shown to have ameliorative property in various diseases. However, the detailed in vivo metabolism of this compound has rarely been reported. In the present study, a method using liquid chromatography quadrupole time‐of‐flight tandem mass spectrometry together with multiple data processing techniques, including extracted ion chromatogram, multiple mass defect filter and MS/MS scanning, was developed to detect and characterize the metabolites of CK in rat urine and feces. After oral administration of CK at a dose of 50 mg/kg, urine and feces were collected for a period of time and subjected to a series of pretreatment. A total of 12 metabolites were tentatively or conclusively identified, comprising 11 phase I metabolites and a phase II metabolite. Metabolic pathways of CK has been proposed, including oxidation, deglycosylation, deglycosylation with sequential oxidation and dehydrogenation and deglycosylation with sequential glucuronidation. Relative quantitative analyses suggested that deglycosylation was the main metabolic pathway. The result could offer insights for better understanding of the mechanism of its pharmacological activities.  相似文献   

14.
Prim‐O‐glucosylcimifugin (PGCN) and cimifugin (CN) are major constituents of Radix Saposhnikoviae that have antipyretic, analgesic and anti‐inflammatory pharmacological activities. However, there were few reports with respect to the metabolism of PGCN and CN in vitro. In this paper, we describe a strategy using ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) for fast analysis of the metabolic profile of PGCN and CN in human liver microsomes. In total, five phase I metabolites of PGCN, seven phase I metabolites and two phase II metabolites of CN were identified in the incubation of human liver microsomes. The results revealed that the main phase I metabolic pathways of PGCN were hydroxylation and hydrolysis reactions. The phase I metabolic pathways of CN were found to be hydroxylation, demethylation and dehydrogenation. Meanwhile, the results indicated that O‐glucuronidation was the major metabolic pathway of CN in phase II metabolism. The specific UDP‐glucuronosyltransferase (UGT) enzymes responsible for CN glucuronidation metabolites were identified using recombinant UGT enzymes. The results indicated that UGT1A1, UGT1A9, UGT2B4 and UGT2B7 might play major roles in the glucuronidation of CN. Overall, this study may be useful for the investigation of metabolic mechanism of PGCN and CN, and it can provide reference and evidence for further pharmacodynamic experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Triclosan is a widely used broad‐spectrum antibacterial agent that acts by specifically inhibiting enoyl–acyl carrier protein reductase. An in vitro metabolic study of triclosan was performed by using Sprague‐Dawley (SD) rat liver S9 and microsome, while the in vivo metabolism was investigated on SD rats. Twelve metabolites were identified by using in‐source fragmentation from high‐performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry (HPLC/APCI‐ITMS) analysis. Compared to electrospray ionization mass spectrometry (ESI‐MS) and tandem mass spectrometry (MS/MS) that gave little fragmentation for triclosan and its metabolites, the in‐source fragmentation under APCI provided intensive fragmentations for the structural identifications. The in vitro metabolic rate of triclosan was quantitatively determined by using HPLC/ESI‐ITMS with the monitoring of the selected triclosan molecular ion. The metabolism results indicated that glucuronidation and sulfonation were the major pathways of phase II metabolism and the hydroxylated products were the major phase I metabolites. Moreover, glucose, mercapturic acid and cysteine conjugates of triclosan were also observed in the urine samples of rats orally administrated with triclosan. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Although various techniques have been employed to analyze drug metabolites, the metabolism of multicomponent herbal medicine has seldom been fully addressed. In contrast to chemical drugs, a number of compounds in herbal medicine could get into circulation and then be metabolized. Metabolism study on active constituents in herbal medicine is a good way for us to explain and predict a variety of events related to the efficacy and toxicity of herbal medicine. The present work aims to elucidate the multicomponent metabolic characteristics of a herbal medicine by the combination of plasma pharmacochemistry and microdialysis sampling. Anemarrhena asphodeloides, a well‐known traditional Chinese medicine, was chosen as a model. After oral administration of A. asphodeloides saponin extract to rats, microdialysis samples were collected continuously in the jugular vein and analyzed by ultrahigh‐performance LC/quadrupole‐TOF MS. The identification of compounds in biosamples was achieved by accurate mass measurement and detailed fragmentation pathway analysis. The results showed that unbound constituents in blood circulation of the rat included seven parent saponins and six metabolites, which might be the potential active components in vivo. Among which, three metabolites have not been previously reported and were identified in this study. It is the first report on systemic metabolism of total saponins of A. asphodeloides in mammalian plasma.  相似文献   

17.
On-line electrochemistry/liquid chromatography/mass spectrometry (EC/LC/MS) was employed to mimic the oxidative metabolism of the fungicide boscalid. High-resolution mass spectrometry and MS/MS experiments were used to identify its electrochemical oxidation products. Furthermore, the introduction of a second electrochemical cell with reductive conditions provided important additional information on the oxidation products. With this equipment, hydroxylation, dehydrogenation, formation of a covalent ammonia adduct, and dimerization were detected after initial one-electron oxidation of boscalid to a radical cation. On-line reaction with glutathione yielded different isomeric covalent glutathione adducts. The results of the electrochemical oxidation are in good accordance with previously reported in vivo experiments, showing that EC/LC/MS is a useful tool for studying biotransformation reactions of various groups of xenobiotics.  相似文献   

18.
8‐Prenylkaempferol is a prenylflavonoid that has various bioactivities and benefits for human health. A high‐performance liquid chromatography with a diode array detector combined with electrospray ionization ion trap time‐of‐flight multistage mass spectrometry (HPLC‐DAD‐ESI‐IT‐TOF‐MSn) method was established to profile and identify the metabolites of 8‐prenylkaempferol in rat in vivo and in vitro, and to study the distribution of these metabolites in rats for the first time. A total of 38 metabolites were detected and tentatively identified, 30 of which were identified as new compounds. The new in vivo metabolic reactions in rats of prenylflavonoids of isomerization, polymerization, sulfation, amino acid conjugation, vitamin C conjugation and other known metabolic reactions were found in the metabolism of 8‐prenylkaempferol. The numbers of detected metabolites in feces, urine, plasma, small intestine, stomach, kidneys, liver, heart, lungs, spleen and hepatic S9 fraction were 31, 19, 1, 20, 13, 8, 7, 3, 3, 1 and 11, respectively. This indicated that small intestine and stomach were the major organs in which the 8‐prenylkaempferol metabolites were distributed. Furthermore, 16 metabolites were determined to have bioactivities based on the literature and ‘PharmMapper’ analysis. These findings are useful for better comprehension of the effective forms, target organs and pharmacological actions of 8‐prenylkaempferol. Moreover, they provide a reference for the study of the metabolism and distribution of prenylflavonoid aglycone compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The electrochemical oxidation of 3,4‐dihydroxy benzoic acid ( 1 ) has been studied in the presence of 6‐methyl‐1,2,4‐triazine‐3‐thione‐5‐one ( 2 ) in aqueous solution. The oxidation mechanism of 1 and its reaction in the presence of 2 was offered. It was confirmed that 1 is converted to 7H‐thiazolo[3,2‐b]‐1,2,4‐triazin‐7‐one derivative 5 through Michael addition reaction of 2 to anodically generated o‐benzoquinone. The results of the research were used for electrochemical synthesis of 5 in an undivided cell in good yield and purity.  相似文献   

20.
Pyrrolidinophenones represent one emerging class of newly encountered drugs of abuse, also known as ‘new psychoactive substances’, with stimulating psychoactive effects. In this work, we report on the detection of the new designer drug α‐pyrrolidinohexiophenone (α‐PHP) and its phase I and II metabolites in a human urine sample of a drug abuser. Determination and structural elucidation of these metabolites have been achieved by liquid chromatography electrospray ionisation quadrupole time‐of‐flight mass spectrometry (LC‐ESI‐QTOF‐MS). By tentative identification, the exact and approximate structures of 19 phase I metabolites and nine phase II glucuronides were elucidated. Major metabolic pathways revealed the reduction of the ß‐keto moieties to their corresponding alcohols, didesalkylation of the pyrrolidine ring, hydroxylation and oxidation of the aliphatic side chain leading to n‐hydroxy, aldehyde and carboxylate metabolites, and oxidation of the pyrrolidine ring to its lactam followed by ring cleavage and additional hydroxylation, reduction and oxidation steps and combinations thereof. The most abundant phase II metabolites were glucuronidated ß‐keto‐reduced alcohols. Besides the great number of metabolites detected in this sample, α‐PHP is still one of the most abundant ions together with its ß‐keto‐reduced alcoholic dihydro metabolite. Monitoring of these metabolites in clinical and forensic toxicology may unambiguously prove the abuse of the new designer drug α‐PHP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号