首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new highly sensitive and selective electrochemical levofloxacin sensor based on co‐polymer‐carbon nanotube composite electrode was developed. Taurine and Glutathione were electrochemically co‐polymerized on multiwalled carbon nanotubes modified glassy carbon electrode (Poly(TAU‐GSH)/CNT/GCE) and used as a levofloxacin sensor in pH 6 phosphate buffer solution. The new composite electrode surfaces were characterized by scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy. Under the optimized conditions, two linear segments were obtained for increasing LEV concentrations between 20 nmol L?1‐1 μmol L?1 and 1.5 μmol L?1‐55 μmol L?1 LEV with a detection limit of 9 nmol L?1 using amperometry. Poly(TAU‐GSH)/CNT/GCE exhibited high sensitivity, selectivity with good stability. The new sensor was employed for real samples of LEV tablets and urine. Promising results were obtained with good accuracy which were also in accordance with LC‐MS/MS analysis.  相似文献   

2.
Diphenylamine (DPA) monomers have been electropolymerized on the amino‐functionalized multiwalled carbon nanotube (AFCNT) composite film modified glassy carbon electrode (GCE) by cyclic voltammetry (CV). The surface morphology of PDPA‐AFCNT was studied using field‐emission scanning electron microscopy (FE‐SEM). The interfacial electron transfer phenomenon at the modified electrode was studied using electrochemical impedance spectroscopy (EIS). The PDPA‐AFCNT/GCE represented a multifunctional sensor and showed good electrocatalytic behavior towards the oxidation of catechol and the reduction of hydrogen peroxide. Rotating‐disk electrode technique was applied to detect catechol with a sensitivity of 1360 µA mM?1 cm?2 and a detection limit of 0.01 mM. Amperometric determination of hydrogen peroxide at the PDPA‐AFCNT film modified electrode results in a linear range from 10 to 800 µM, a sensitivity of 487.1 µA mM?1 cm?2 and detection limit of 1 µM. These results show that the nano‐composite film modified electrode can be utilized to develop a multifunctional sensor.  相似文献   

3.
A new hemoglobin (Hb) and carbon nanotube (CNT) modified carbon paste electrode was fabricated by simply mixing the Hb, CNT with carbon powder and liquid paraffin homogeneously. To prevent the leakage of Hb from the electrode surface, a Nafion film was further applied on the surface of the Hb‐CNT composite paste electrode. The modified electrode was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Direct electrochemistry of hemoglobin in this paste electrode was easily achieved and a pair of well‐defined quasi‐reversible redox peaks of a heme Fe(III)/Fe(II) couple appeared with a formal potential (E0′) of ?0.441 V (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical behaviors of Hb in the composite electrode were carefully studied. The fabricated modified bioelectrode showed good electrocatalytic ability for reduction of H2O2 and trichloroacetic acid (TCA), which shows potential applications in third generation biosensors.  相似文献   

4.
Composites of unmodified or oxidized carbon nano‐onions (CNOs/ox‐CNOs) with poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are prepared with different compositions. By varying the ratio of PEDOT:PSS relative to CNOs, CNO/PEDOT:PSS composites with various PEDOT:PSS loadings are obtained and the corresponding film properties are studied as a function of the polymer. X‐ray photoelectron spectroscopy characterization is performed for pristine and ox‐CNO samples. The composites are characterized by scanning and transmission electron microscopy and differential scanning calorimetry studies. The electrochemical properties of the nanocomposites are determined and compared. Doping the composites with carbon nanostructures significantly increases their mechanical and electrochemical stabilities. A comparison of the results shows that CNOs dispersed in the polymer matrices increase the capacitance of the CNO/PEDOT:PSS and ox‐CNO/PEDOT:PSS composites.  相似文献   

5.
《Electroanalysis》2006,18(5):485-492
A novel method for the fabrication of carbon nanotubes/poly(1,2‐diaminobenzene) nanoporous composite based electrode was proposed. By multipulse potentiostatic electropolymerization, the multi‐walled carbon nanotubes (MWNTs) and poly(1,2‐diaminobenzene) were deposited simultaneously on the electrode surface. Compared with the composite prepared by the traditional potentiodynamic method, the composite synthesized by multipulse potentiostatic method has a unique nanoporous structure, exhibits excellent conductivity and better environmental stability. The surface of the resulting electrode was characterized with scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The nanoporous composite film modified glassy carbon electrode was also used successfully for the simultaneously voltammetric determination of trace level of Cd2+ and Cu2+ at first‐time. Under the optimal conditions, the determination limits of 0.25 and 0.33 ppb for Cd2+ and Cu2+ were obtained, respectively. The calibration graphs were linear in the concentration range of 5–100 ppb. The electrode system provides an excellent platform for ultra sensitive electrochemical sensors for chemical and biological sensing.  相似文献   

6.
《Electroanalysis》2017,29(5):1400-1409
Gold nanoparticles (AuNPs) and reduced graphene oxide (RGO) composite modified carbon paste electrode (CPE) was prepared by electrodepositing AuNPs over the reduced graphene oxide (RGO) modified carbon paste electrode. The composite material was characterised using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and atomic force microscopy (AFM) techniques. The nano composite modified electrode was applied for the determination of total As and for the inorganic speciation of As(III) and As(V) in environmental samples. The linear dynamic range was obtained for the determination of As(III) in the present method from 1μgL−1 to 20 μgL−1 and the limit of detection(LOD) in the standard solution was found to be 0.13 μgL−1 for the 300 sec deposition time in 10 mL supporting electrolyte solution. This method was applied for the determination of As (III) in water and soil samples. The results were agreed well with the result obtained from the hydride generation atomic absorption spectrometry.  相似文献   

7.
A simple, highly sensitive and label‐free electrochemical impedance spectroscopy (EIS) immunosensor was developed using Nafion and gold nanoparticles (nano‐Au/Nafion) composites for the determination of 1‐pyrenebutyric acid (PBA). Under the optimal conditions, the amount of immobilized antibody was significantly improved on the nano‐Au/Nafion electrode due to the synergistic effect and biocompatibility of Nafion film and gold nanoparticles composites. The results showed that the sensitivity and stability of nano‐Au/Nafion composite electrode for PBA detection were much better than those of nano‐Au modified glassy carbon electrode (nano‐Au/GCE). The plot of increased electron transfer resistances (Rets) against the logarithm of PBA concentration is linear over the range from 0.1 to 150 ng·mL?1 with the detection limit of 0.03 ng·mL?1. The selectivity and accuracy of the proposed EIS immunosensor were evaluated with satisfactory results.  相似文献   

8.
A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1‐butyl‐3‐methyl‐imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4‐styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)64?/Fe(CN)63? can be effectively improved at the PSS‐BMIMPF6 modified GC. The bismuth modified PSS‐BMIMPF6 composite film electrodes (GC/PSS‐BMIMPF6/BiFEs) displayed high mechanical stability and sensitive stripping voltammetric performances for the determination of trace metal cations. The GC/PSS‐BMIMPF6/BiFE exhibited well linear response to both Cd(II) and Pb(II) over a concentration range from 1.0 to 50 μg L?1. And the detection limits were 0.07 μg L?1 for Cd(II) and 0.09 μg L?1 for Pb(II) based on three times the standard deviation of the baseline with a preconcentration time of 120 s, respectively. Finally, the GC/PSS‐BMIMPF6/BiFEs were successfully applied to the determination of Cd(II) and Pb(II) in real sample, and the results of present method agreed well with those of atomic absorption spectroscopy.  相似文献   

9.
《Electroanalysis》2018,30(9):1946-1955
In this paper, a rapid and sensitive modified electrode for the simultaneous determination of hydroquinone (HQ) and bisphenol A (BPA) is proposed. The simultaneous determination of these two compounds is extremely important since they can coexist in the same sample and are very harmful to plants, animals and the environment in general. A carbon paste electrode (CPE) was modified with silver nanoparticles (nAg) and polyvinylpyrrolidone (PVP). The PVP was used as a reducing and stabilizing agent of nAg from silver nitrate in aqueous media. The nAg‐PVP composite obtained was characterized by transmission electron microscopy and UV‐vis spectroscopy. The electrochemical behavior of HQ and BPA at the nAg‐PVP/CPE was investigated in 0.1 mol L−1 B−R buffer (pH 6.0) using cyclic voltammetry (CV) and square wave voltammetry (SWV). The results indicate that the electrochemical responses are improved significantly with the use of the modified electrode. The calibration curves obtained by SWV, under the optimized conditions, showed linear ranges of 0.09–2.00 μmol L−1 for HQ (limit of detection 0.088 μmol L−1) and 0.04–1.00 μmol L−1 for BPA (limit of detection 0.025 μmol L−1). The modified electrode was successfully applied in the analysis of water samples and the results were comparable to those obtained using UV‐vis spectroscopy.  相似文献   

10.
Glyceline, reline, or ethaline deep eutectic solvents and carbon black nanoparticles within a crosslinked chitosan film are investigated as glassy carbon electrode modifiers for the first time. The selected 5 mg mL−1 glyceline modified GCE was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Simultaneous determination of acetaminophen and diclofenac by differential pulse adsorptive stripping voltammetry (DPAdSV) presented limits of detection of 2.6×10−8 and 5.2×10−8 mol L−1 for acetaminophen and diclofenac, respectively, in pharmaceutical and biological samples. The obtained results were compared with those obtained by HPLC at a confidence level of 95 %.  相似文献   

11.
《Electroanalysis》2017,29(4):1014-1021
An electrochemical device was developed for the simultaneous determination of sulfamethoxazole (SMX) and trimethoprim (TMP) using differential pulse voltammetry and glassy carbon (GC) electrodes modified with reduced graphene oxide (rGO) and silver nanoparticle (AgNP) composites, synthesised using both chemical and electrochemical methods. The morphology and electrochemical behaviour of the GC electrodes modified with the rGO/AgNP (chemical method) and rGO‐AgNP (electrochemical method) composites were characterised by scanning electron microscopy and cyclic voltammetry. These techniques demonstrated that, in both methods, the graphene oxide was modified by the AgNPs, and the composite synthesised by the electrochemical method showed a better dispersion of the nanoparticles, resulting in an increase in the surface area compared to the rGO/AgNP composite. The GC/rGO‐AgNP electrode was evaluated and optimised for the simultaneous determination of SMX and TMP, achieving detection limits of 0.6 μmol L−1 for the SMX and 0.4 μmol L−1 for the TMP. The proposed GC/rGO‐AgNP electrochemical device was successfully applied to the simultaneous determination of SMX and TMP in wastewaters samples.  相似文献   

12.
Well‐confined elemental sulfur was implanted into a stacked block of carbon nanospheres and graphene sheets through a simple solution process to create a new type of composite cathode material for lithium–sulfur batteries. Transmission electron microscopy and elemental mapping analysis confirm that the as‐prepared composite material consists of graphene‐wrapped carbon nanospheres with sulfur uniformly distributed in between, where the carbon nanospheres act as the sulfur carriers. With this structural design, the graphene contributes to direct coverage of sulfur to inhibit the mobility of polysulfides, whereas the carbon nanospheres undertake the role of carrying the sulfur into the carbon network. This composite achieves a high loading of sulfur (64.2 wt %) and gives a stable electrochemical performance with a maximum discharge capacity of 1394 mAh g?1 at a current rate of 0.1 C as well as excellent rate capability at 1 C and 2 C. The improved electrochemical properties of this composite material are attributed to the dual functions of the carbon components, which effectively restrain the sulfur inside the carbon nano‐network for use in lithium–sulfur rechargeable batteries.  相似文献   

13.
《Electroanalysis》2006,18(5):478-484
Cuprous oxide nanowhisker was prepared by using cetyltrimethyl ammonium bromide (CATB) as soft template, and was characterized by XRD and TEM methods. The electrochemical properties of nano‐Cu2O and nano‐Cu2O‐methylene blue (MB) modified electrode were studied. The experimental results indicate that nano‐Cu2O shows a couple of redox peaks corresponding to the redox of Cu(II)/Cu(I), the peak currents are linear to the scan rates which demonstrate that the electrochemical response of Cu2O is surface‐controlled. The composite nano‐Cu2O‐Nafion‐MB modified electrode shows a trend of decrease of peak currents corresponding to the Cu (II)/Cu (I). However, the electrocatalytic ability of nano‐Cu2O‐MB composite film to dopamine increases dramatically. At this composite electrode, dopamine shows a couple of quasireversible redox peaks with a peak separation of 106 mV, the peak current increases about 8 times and the oxidation peak potential decreases about 200 mV as compared to that at bare glassy carbon electrode. The peak currents change linearly with concentration of dopamine from 1×10?7 to 3.2×10?4 mol/L, the detection limit is 4.6×10?8 mol/L. The composite electrode can effectively eliminate the interference of ascorbic acid and has better stability and excellent reproducibility.  相似文献   

14.
In this work, polypyrrole (PPy) and its respective composite with functionalized multi-walled carbon nanotubes (MWCNT) were obtained by chemical polymerization of the monomer pyrrole in aqueous solution. The obtained PPy as well as its composite (PPy-MWCNT) were characterized by Fourier transform infrared spectroscopy (FTIR) and were used to produce nanostructured self-assembled (SA) films deposited onto glass substrates covered with indium tin oxide (ITO). The SA films were produced with alternated layers of polystyrene sulphonated (PSS) and were characterized by UV-visible, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analyses. The applicability of the SA films was evaluated by square wave voltammetry (SWV) with standard additions of aliquots of Diuron pesticide in Britton-Robinson buffer solutions (pH = 2.0). The results showed an oxidation peak at 0.23 V which increases in function of the Diuron concentration for both the SA films. It was also observed that the SA film based on the composite (PPy-MWCNT/PSS) showed a peak current intensity about ten times higher in comparison with its unmodified counterpart (PPy/PSS) for a Diuron concentration of 4.29 × 10?5 mol L?1, indicating a synergic effect between PPy and MWCNT in the composite. The limits of quantification (LOQ) and limits of detection (LOD) were respectively 8.6 × 10?7 mol L?1 and 2.6 × 10?7 mol L?1.  相似文献   

15.
Mesoporous carbon ceramic SiO2/50 wt % C (SBET=170 m2 g?1), where C is graphite, were prepared by the sol‐gel method. The materials were characterized using N2 sorption isotherms, scanning electron microscopy, and conductivity measurements. The matrix was used as support for the in situ immobilization of Mn(II) phthalocyanine (MnPc) on their surface. XPS was used to determine the Mn/Si atomic ratios of the MnPc‐modified materials. Pressed disk electrodes were prepared with the MnPc‐modified matrix, and tested as an electrochemical sensor for nitrite oxidation. The linear response range, sensitivity, detection limit and quantification limit were 0.79–15.74 µmol L?1, 17.31 µA L µmol?1, 0.02 µmol L?1 and 0.79 µmol L?1, respectively, obtained using cyclic voltammetry. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation was 1.7 % for 10 measurements of a solution of 12.63 µmol L?1 nitrite. The sensor employed to determine nitrite in sausage meat, river and lake water samples showed to be a promising tool for this purpose.  相似文献   

16.
The present work tries to introduce a high‐performance nano‐composite membrane by using polydimethylsiloxane (PDMS) as its main polymer matrix to meet some specific requirements in industrial gas separations. Different nano‐composite membranes were synthesized by incorporating various amounts of nano‐sized silica particles into the PDMS matrix. A uniform dispersion of nano‐particles in the host membranes was obtained. The nano‐composite membranes were characterized morphologically by scanning electron microscopy and atomic force microscopy. Separation properties, permeability, and ideal selectivity of C3H8, CH4, and H2 through the synthesized nano‐composite membranes with different nano‐particle contents (0.5, 1, 1.5, 2, 2.5, and 3 wt%) were investigated at different pressures (2, 3, 4, 5, 6, and 7 atm) and constant temperature (35°C). It was found out that a 2 wt% loading of nano‐particles into the PDMS matrix is optimal to obtain the best separation performance. Afterwards, sorption experiments for the synthesized nano‐composite membranes were carried out, and diffusion coefficients of the gases were calculated based on solution‐diffusion mechanism. Gas permeation and sorption experiments showed an increase in sorption and a decrease in diffusion coefficients of the gases through the nano‐composite membranes by adding nano‐particles into the host polymer matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A good route for the fabrication of CeO2 nanoparticles (nano‐CeO2)/multi‐walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (GCE) was proposed. MWCNTs are used to immobilize nano‐CeO2. What′s more, with the addition of the MWCNTs, the agglomeration level of CeO2 nanoparticles can be reduced, the extremely large surface area can be obtained and the electron transfer rate can be increased. The morphological characterization of nano‐CeO2/MWCNTs was examined by scanning electron microscopy (SEM). The performances of the nano‐CeO2/MWCNTs/GCE were characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and typical amperometric response (it). The potential utility of the constructed electrodes was demonstrated by applying them to the analytical determination of puerarin concentration. The catalytic oxidation of puerarin has a better result on nano‐CeO2/MWCNTs/GCE because of the synergistic effect of nano‐CeO2 and MWCNTs. An optimized limit of detection of 8.0×10?9 mol/L was obtained at a signal‐to‐noise ratio of 3 and with a fast response time (within 3 s). Additionally, the nano‐CeO2/MWCNTs/GCE exhibited a wide linear range from 0.04 to 6.0 μmol/L and high sensitivity.  相似文献   

18.
A novel horseradish peroxidase (HRP) electrochemical biosensor based on a MgO nanoparticles (nano‐MgO)‐chitosan (chit) composite matrix was developed. The morphology of nano‐MgO‐chit nanocomposite was examined by scanning electron microscopy (SEM). The interaction between nano‐MgO‐chit nanocomposite matrix and enzyme was characterized with UV‐vis spectra. This proposed composite material combined the advantages of inorganic nanoparticles and organic polymer chit. The HRP immobilized in the nanocomposite matrix displayed excellent electrocatalytic activity to the reduction of H2O2 in the presence of hydroquinone as a mediator. The effects of the experimental variables such as solution pH and the working potential were investigated using steady‐state amperometry. The present biosensor (HRP‐modified electrode) had a fast response towards H2O2 (less than 10 s), and excellent linear relationships were obtained in the concentration range of 0.1–1300 μM, with a detection limit of 0.05 μM (S/N=3). Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

19.
A high‐sensitivity sensing platform for lead(II) and cadmium(II) based on the bismuth modified carbon nanotubes (CNTs)‐poly(sodium 4‐styrenesulfonate) composite film electrode (CNTs‐PSS/Bi) was fabricated. The composite film CNTs‐PSS/Bi provided remarkably improved sensitivity and reproducibility compared with previously reported CNTs‐modified electrodes. The detection limits were estimated to be 0.04 ppb for lead(II) and 0.02 ppb for cadmium(II) with a preconcentration time of 120 s, respectively. The linear responses of Cd2+ and Pb2+ were over the ranges of 0.5–50 ppb and 0.5–90 ppb, respectively. Finally, the practical application of the proposed method was verified in the real water sample with satisfactory results.  相似文献   

20.
To improve the reproducibility, stability, and sensitivity of bismuth film electrode (BiFE), we studied the performances of a mixed coating of two cation‐exchange polymers, Nafion (NA) and poly(sodium 4‐styrenesulfonate) (PSS), modified glassy carbon BiFE (GC/NA‐PSS/BiFE). The characteristics of GC/NA‐PSS/BiFE were investigated by scanning electron microscopy and cyclic voltammetry. Various parameters were studied in terms of their effect on the anodic stripping voltammetry (ASV) signals. Under optimized conditions, the limits of detection were 71 ng L?1 for Cd(II) and 93 ng L?1 for Pb(II) with a 10 min preconcentration. The results exhibited that GC/NA‐PSS/BiFE can be a reproducible and robust tool for monitor of trace metals by ASV rapidly and environmentally friendly, even in the presence of surface‐active compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号