首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel non‐enzymatic glucose sensor based on nickel hydroxide and intercalated graphene with ionic liquid (G‐IL) nanocomposite modified glass carbon electrode was fabricated. Scanning electron microscope, Fourier transform infrared spectra and energy dispersive X‐ray spectroscopy of the nanocomposite confirmed the morphology and ingredient of Ni(OH)2 as well as G‐IL. Moreover, experimental results of cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry indicated the sensing properties of Ni(OH)2 at Ni(OH)2/G‐IL modified electrode towards the typical electrocatalytic oxidation process of glucose at 0.43 V in 0.10 M NaOH. The current response was linearly related to glucose concentration in a range from 0.5 to 500 μM with a detection limit of 0.2 μM (S/N = 3) and sensitivity of 647.8 μA mM?1 cm?2. The response time of the sensor to glucose was less than 2 s. This work may be expected to develop an excellent electrochemical sensing platform of G‐IL as a catalysis carrier.  相似文献   

2.
A sonochemical method has been successfully used to synthesize MnO2/MWNTs nanocomposites. The structure and nature of the resulting MnO2/MWNTs composite were characterized by scanning electron microscopy (SEM), energy‐dispersive X‐ray diffraction (EDX), X‐ray photoelectron spectroscopy (XPS).The results show that the sonochemically synthesized MnO2 nanoparticles were homogeneously dispersed on the modified MWNT surfaces. The performance of the MnO2/MWNTs nanocomposites modified electrode was characterized using cyclic voltammetry (CV) and Nyquist plots. The electrode exhibits efficient electron transfer ability and high electrochemical response towards hydrazine. This may be attributed to the small particle size, high dispersion of MnO2 particles. The fabricated hydrazine sensor showed a wide linear range of 5.0×10?7–1.0×10?3 M with a response time less than 5 s and a detection limit of 0.2 μM. Taking the advantage of the unique properties of both MWNTs and MnO2, it would greatly broaden the applications of MWNTs and MnO2.  相似文献   

3.
A new electrochemical sensor based on Fe3O4@SiO2‐PANI‐Au nanocomposite was fabricated for modification of glassy carbon electrode (Fe3O4@SiO2‐PANI‐Au GCE). The Fe3O4@SiO2‐PANI‐Au nanocomposite was characterized by TEM, FESEM‐EDS‐Mapping, XRD, and TGA methods. The Fe3O4@SiO2‐PANI‐Au GC electrode exhibited an acceptable sensitivity, fast electrochemical response, and good selectivity for determination of quercetin. Under optimal conditions, the linear range for quercetin concentrations using this sensor was 1.0×10?8 to 1.5×10?5 mol L?1, and the limit of detection was 3.8×10?9 mol L?1. The results illustrated that the offered sensor could be a possible alternative for the measurement of quercetin in food samples and biological fluids.  相似文献   

4.
A sensitive and selective imprinted electrochemical sensor for the determination of aflatoxin B1 (AFB1) was constructed on a glassy carbon electrode by stepwise modification of functional multiwalled carbon nanotubes (MCNTs), Au/Pt bimetallic nanoparticles (Au/PtNPs), and a thin imprinted film. The fabrication of a homogeneous porous poly o-phenylenediamine (POPD)-grafted Au/Pt bimetallic multiwalled carbon nanotubes nanocomposite film was conducted by controllable electrodepositing technology. The sensitivity of the sensor was improved greatly because of the nanocomposite functional layer; the proposed sensor exhibited excellent selectivity toward AFB1 owing to the porous molecular imprinted polymer (MIP) film. The surface morphologies of the modified electrodes were characterized using a scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. A linear relationship between the sensor response signal and the logarithm of AFB1 concentrations ranging from 1?×?10?10 to 1?×?10?5 mol L?1 was obtained with a detection limit of 0.03 nmol L?1. It was applied to detect AFB1 in hogwash oil successfully.  相似文献   

5.
In this article, a highly sensitive electrochemical sensor is introduced for direct electro-oxidation of bisphenol A (BPA). The novel nanocomposite was prepared based on multi-walled carbon nanotube/thiol functionalised magnetic nanoparticles (Fe3O4-SH) as an immobilisation platform and gold nanoparticles (AuNPs) as an amplifying electrochemical signal. The chemisorbed AuNPs exhibited excellent electrochemical activity for the detection of BPA. Some analysing techniques such as Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and energy-dispersive x-ray diffraction exposed the formation of nanocomposite. Under optimum conditions (pH 9), the sensor showed a linear range between 0.002–240 μM, with high sensitivity (0.25 μA μM?1) along with low detection limit (6.73 × 10?10 M). Moreover, nanocomposites could efficiently decrease the effect of interfering agents and remarkably enhance the utility of sensor at detection of BPA in some real samples.  相似文献   

6.
A gold nanoparticle (AuNP) and graphene nanosheet (GN) modified glassy carbon electrode (GCE) is proposed as voltammetric sensor for caffeic acid assay. The sensor exhibits a surface‐confined and reversible process for oxidation of caffeic acid revealed by cyclic voltammetry. The results show more favorable electron transfer kinetics than the bare GCE. The linear response of the sensor is from 5×10?7 to 5×10?5 M with a detection limit of 5×10?8 M (S/N=3). The AuNP/GN nanocomposite shows more favorable electrochemical activity and should be a kind of more robust and advanced functional material, which provides a promising platform for electrochemical sensors and biosensors. The method was successfully applied to detect caffeic acid in pharmaceutical tablets with satisfactory results.  相似文献   

7.
Co3O4/graphene oxide (GO) nanocomposites were successfully prepared by a depositing‐decomposition method. The as‐prepared samples were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Cyclic voltammetry (CV) was used to evaluate the electrochemical response of a glass carbon electrode (GCE) modified with Co3O4/GO nanocomposite towards glucose. Compared with the Co3O4/GCE, the Co3O4/GO/GCE exihibits higher electrocatalytic activity due to the synergistic effects of electrocatalytic ability of Co3O4 and large surface of GO. The Co3O4/GO/GCE was applied for glucose detection in alkaline solution. The linear current response range of glucose on Co3O4/GO/GCE covered the range from 9 × 10?5 to 6.03 × 10?3 M, with a detection limit of 5.2 × 10?7 M (S/N = 3).  相似文献   

8.
In the present study, a cauliflower‐like NiCo2O4?Zn/Al layered double hydroxide (NiCo2O4?Zn/Al LDH) nanocomposite was used as a novel electrode material for the sensitive and selective determination of pyridoxine (vitamin B6). The structure and morphology of the as‐prepared nanocomposite were characterized by X‐ray diffraction (XRD), FT‐IR, field emission scanning electron microscopy (FESEM) and energy dispersive X‐ray spectroscopy (EDX). The NiCo2O4?Zn/Al LDH nanocomposite exhibited excellent electrocatalytic ability in the oxidation of pyridoxine, which could result from the synergistic effect of the two components. The developed sensor also provided a selective determination of pyridoxine in the presence of other species such as vitamins (B1, B2, B12 and ascorbic acid), inorganic ions and biomolecules. The fabricated sensor showed a good linear response for pyridoxine over the concentration ranges 2×10?7–2.0×10?4 mol L?1 with a low detection limit of 8.6×10?8 mol L?1. Finally, the proposed method was successfully applied for the determination of pyridoxine in commercial tablets and plasma samples with satisfactory results. Furthermore, this novel sensor displayed superior benefits in terms of stability, sensitivity, repeatability and cost. The present work aims to expand NiCo2O4 based nanocomposites to sensor fields and promote the development of pyridoxine sensors.  相似文献   

9.
In this work, a novel sensor for detecting hydrogen peroxide was constructed on the base of nanotubular TiO2 and platinum nanoparticles. The morphology, structural, and electrochemical properties of the Pt/TiO2 nanocomposite electrodes were characterized by SEM, XRD and electrochemical methods. With an operating potential of +0.3 V versus Ag/AgCl, the sensor produces catalytic oxidation currents at the nanocomposite electrode, which can be exploited for quantitative determinations. The amperometric signals are linearly proportional to hydrogen peroxide concentration in the range 4×10?6 to 1.25×10?3 M. The regression equation is I (μA)=0.85 c (mM)+0.16 with a correction coefficient of 0.997. At a signal‐to‐noise ratio of 3, a detection limit of 4.0 μM H2O2 can be observed for the nanocomposite electrode. In addition, the sensor has a good stability and reproducibility. The construction process is simple and inexpensive. The results demonstrated that nanotubular TiO2 exhibits great prospect for developing a class of ideal and novel bioreactors and biosensors.  相似文献   

10.
In this work, a glassy carbon electrode (GCE) was modified with multiwall carbon nanotubes/ionic liquid/graphene quantum dots (MWCNTs/IL/GQDs) nanocomposite. Then, the nanocomposite was decorated with nickel‐cobalt nanoparticles (Ni?Co NPs), and it was used as a non‐enzymatic glucose sensor. Field emission scanning electron microscopy, X‐ray diffraction spectroscopy, and energy dispersive spectroscopy were employed to prove the electrodeposition of the Ni?Co NPs on the surface of MWCNTs/IL/GQDs/GCE. Also, cyclic voltammetric and amperometric methods were utilized for the investigation of the electrochemical behaviour of the Ni?Co NPs/MWCNTs/IL/GQDs/GCE for glucose oxidation. The novel amperometric sensor displayed two linear ranges from 1.0 to 190.0 μmol L?1 and 190.0 to 4910 μmol L?1 with a low detection limit of 0.3 μmol L?1 as well as fast response time (2 s) and high stability. Also, the sensor showed good selectivity for glucose determination in the presence of ascorbic acid, citric acid, dopamine, uric acid, fructose, and sucrose, as potential interference species. Finally, the performance of the proposed sensor was investigated for the glucose determination in real samples. Ni?Co NPs/MWCNTs/IL/GQDs/GCE showed good sensitivity and excellent selectivity.  相似文献   

11.
《Analytical letters》2012,45(18):3046-3057
Abstract

Nano-MnO2/chitosan composite film modified glassy carbon electrode (MnO2/CHIT/GCE) was fabricated and a DNA probe was immobilized on the electrode surface. The immobilization and hybridization events of DNA were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The EIS was applied to the label-free detection of the target DNA. The human immunodeficiency virus (HIV) gene fragment was successfully detected by this DNA electrochemical sensor. The dynamic detection range was from 2.0 × 10?11 to 2.0 × 10?6 mol/L, with a detection limit of 1.0 × 10?12 mol/L.  相似文献   

12.
A simple but highly snesitive electrochemical sensor for the determination of dihydromyricetin (DMY) based on graphene‐Nafion nanocomposite film modified Glassy carbon electrode (GCE) was reported. The characteristic of the sensor was examined by scanning electron microscopic (SEM) and electrochemical impedance spectroscopy (EIS). Compares with bare GCE, pre‐anodized glassy carbon electrode (GCE(ox)) and Nafion modified electrode, the sensor exhibited the more superior ability of detecting DMY, due to the synergetic graphene and Nafion. Other, the dependence of the current on pH, instrumental parameters, accumulation time and potential were investigated to optimize the experimental conditions in the determination of DMY. Under the selected conditions, the response peak currents were linear relationship with the DMY concentrations in the range of 8.0 × 10?8 ~ 2.0 × 10?5 mol L?1 with a detection limit of 2.0 × 10?8 mol L?1. And, the method was also applied successfully to detect DMY in Ampelopsis grossedentata samples.  相似文献   

13.
A novel nanocomposite of molecularly imprinted polymers and graphene sheets was fabricated and used to obtain a highly conductive acetylene black paste electrode with high conductivity for the detection of bisphenol A. The two‐dimensional structure and the chemical functionality of graphene provide an excellent surface for the enhancement of the sensitivity of the electrochemical sensor and the specificity of molecularly imprinted polymers to improve detection of bisphenol A. The synergistic effect between graphene and molecularly imprinted polymers confers the nanocomposite with superior conductivity, broadened effective surface area and outstanding electrochemical performance. Factors affecting the performance of the imprinted sensor such as molecularly imprinted polymers concentration, foster time and scan rate are discussed. The sensor successfully detects bisphenol A with a wide linear range of 3.21 × 10?10 to 2.8 × 10?1 g/L (R = 0.995) and a detection limit of 9.63 × 10?11g/L. The fabricated sensor also possessed high selectivity and stability and exhibits potential for environmental detection of contaminants and food safety inspection.  相似文献   

14.
In this work, a novel electrochemiluminescent (ECL) pesticide sensor based on zinc oxide nanocrystals decorated nickel foam is proposed for determination of imidacloprid for the first time. The silica film was used as a morphology‐controlling factor for modification of the electrode with zinc oxide nanocrystals. Zinc oxide was selected as luminescent material due to its cheapness, non‐toxicity, high thermal stability and excellent luminescence properties which truly adhered on the surface of nickel foam. The K2S2O8 was used as strong co‐reactant for this purpose. The silica template plays an important role in controlling the size of ZnO nanocrystals. The Physical morphology of the ZnO/Ni‐foam electrode was performed by electrochemical impedance spectroscopy, Brunauer‐Emmett‐Teller (BET), X‐Ray diffraction analysis, field emission scanning electron microscopy, and energy‐dispersive X‐ray analysis. The ultra‐sensitive electrochemiluminescence method was successfully used for ultra‐trace determination of imidacloprid. The linear dynamic range and low detection limit were obtained 3×10?14 ?8×10?8 M and 4.4×10?15 M, respectively. Also, the relative standard deviation for 15 repetitive optical signals was calculated 1.09 %.The present ECL sensor exhibited superior performance toward the accurate determination of imidacloprid with good reproducibility and stability.  相似文献   

15.
A water‐insoluble picket‐fence porphyrin was first assembled on nitrogen‐doped multiwalled carbon nanotubes (CNx MWNTs) through Fe? N coordination for highly efficient catalysis and biosensing. Scanning electron micrographs, Raman spectra, X‐ray photoelectron spectra, UV/Vis absorption spectra, and electrochemical impedance spectra were employed to characterize this novel nanocomposite. By using electrochemical methods on the porphyrin at low potential in neutral aqueous solution, the presence of CNx MWNTs led to the direct formation of a high‐valent iron(IV)–porphyrin unit, which produced excellent catalytic activity toward the oxidation of sulfite ions. By using sulfite ions, a widely used versatile additive and preservative in the food and beverage industries, as a model, a highly sensitive amperometric biosensor was proposed. The biosensor showed a linear range of four orders of magnitude from 8.0×10?7 to 4.9×10?3 mol L?1 and a detection limit of 3.5×10?7 mol L?1 due to the highly efficient catalysis of the nanocomposite. The designed platform and method had good analytical performance and could be successfully applied in the determination of sulfite ions in beverages. The direct noncovalent assembly of porphyrin on CNx MWNTs provided a facile way to design novel biofunctional materials for biosensing and photovoltaic devices.  相似文献   

16.
In this work, we described an electrochemical sensor using a nanocomposite based on graphene oxide (GO), silver nanoparticles (AgNP), and disordered mesoporous silica (SiO2), which was used for the determination of bisphenol A in water samples. Initially, the hybrid material SiO2/GO was synthesized via sol-gel process, subsequently decorated with AgNP with an approximate 20 nm particle size prepared directly on the surface of the SiO2/GO using N, N-dimethylformamide (DMF) as an agent reducer. A glassy carbon electrode was modified with SiO2/GO/AgNP and used in developing a sensitive electrochemical sensor for the determination of bisphenol A in phosphate buffer 0.1 mol L?1 (pH 7.0). The detection limit was 45.2 nmol L?1 with a linear response range between 1.0 × 10?7 and 2.6 × 10?6 mol L?1 and a sensitivity of 1.27 × 10?7 A mol?1 L. Finally, the optimized electrochemical sensor was used for the quantitation of endocrine interfering in natural waters.  相似文献   

17.
《Electroanalysis》2018,30(1):137-145
3D Flower‐like manganese dioxide (MnO2) nanostructure with the ability of catalysis for hydrogen peroxide (H2O2) and super large area that can support gold nanoparticles (AuNPs) with enhanced activity of electron transfer have been developed. The nanostructure of hybrids was prepared by directly mixing citric‐capped AuNPs and 3‐aminopropyltriethoxysilane (3‐APTES)‐capped nano‐MnO2 using an electrostatic adsorption strategy. The Au‐MnO2 composite was extensively characterized by scanning electron microscope (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), the Brunauer‐Emmett‐Teller (BET) method and X‐ray photoemission spectroscopy (XPS). Electrochemical properties were evaluated through cyclic voltammetry (CV) and amperometric method. The prepared sensor showed excellent electrochemical properties towards H2O2 with a wide linear range from 2.5×10−3∼1.39 mM and 3.89∼13.89 mM. The detection limit is 0.34 μM (S/N=3) with the sensitivities of 169.43 μA mM−1 cm−2 and 55.72 μA mM−1 cm−2. The detection of real samples was also studied. The result exhibited that the prepared sensor can be used for H2O2 detection in real samples.  相似文献   

18.
We developed a novel iron‐tetrasulfophthalocyanine‐graphene‐Nafion (FeTSPc‐GR‐Nafion) modified screen‐printed electrode to determine hydrogen peroxide (H2O2) with high sensitivity and selectivity. The nanocomposite film (FeTSPc‐GR‐Nafion) exhibits an excellent electrocatalytic activity towards oxidation of H2O2 at a potential of +0.35 V in the absence of enzyme. A comparative study reveals that the FeTSPc‐GR complexes play a dual amplification role. Amperometric experiment indicates that the sensors possess good sensitivity and selectivity, with a linear range from 2.0×10?7 M to 5.0×10?3 M and a detection limit of 8.0×10?8 M. This sensor has been successfully used to develop the glucose biosensor and has also been applied to determine H2O2 in sterile water.  相似文献   

19.
A newly nonenzymatic sensor for hydrogen peroxide (H2O2) based on the (Au‐HS/SO3H‐PMO (Et)) nanocomposite is demonstrated. The electrochemical properties of the as‐prepared nanocomposite were studied. It displayed an excellent performance towards H2O2 sensing in the linear response range from 0.20 µM to 4.30 mM (R=0.9999) with a sensitivity of 6.35×102 µA µM?1 cm?2 and a low detection limit of 0.0499 µM. Furthermore, it was not affected by electroactive interference species. These features proved that the modified electrode was suitable for determination of H2O2.  相似文献   

20.
We report the sequential electrochemical deposition of bimetallic films of porphyrins onto gold nanoparticles, previously deposited by SAM on gold surface. SEM analysis of EAu/polyFeCuPP and EAu/cys/AuNp/polyFeCuPP showed a heterogeneous distribution of material aggregates in the former (ca. 0.1–1 μm), whereas the nanocomposite film exhibits a highly microporous structure in the micrometer diameter range. The sensitivity for H2O2 detection increased four times (609±6 mA M?1 cm?2 vs. 157±3 mA M?1 cm?2) with a linear relationship in the range of 1×10?5–2×10?3 M. The application of the particulate material to the first‐generation biosensor of glucose is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号