首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Screen‐printed electrodes (SPEs) are cheap and disposable. But their application for heavy metal detection is limited due to the low sensitivity and poor selectivity. Here we report the ultrasensitive and simultaneous determination of Zn2+, Cd2+ and Pb2+ on a multiwalled carbon nanotubes and Nafion composite modified SPE with in situ plated bismuth film (MWCNTs/NA/Bi/SPE). The linear curves range from 0.5–100 µg L?1 for Zn2+ and 0.5–80 µg L?1 for Cd2+. Uniquely, the linear curve for Pb2+ ranges from 0.05–100 µg L?1 with a detection limit of 0.01 µg L?1. The practical application was verified in real samples with satisfactory results.  相似文献   

2.
The cyclic voltammetric behavior of nitrazepam was investigated at screen‐printed carbon electrodes over the range ?1.5 V to +1.5 V. Two reduction peaks were observable on the negative scan, at ?0.7 V, and ?1.2 V using pH 6 buffer. On the return scan a single oxidation peak was obtained at ?0.05 V. For quantitative analysis of beverages, we developed an anodic adsorptive stripping voltammetric method which required only dilution with buffer. The identification of nitrazepam and flunitrazepam could be achieved using cyclic voltammetry.  相似文献   

3.
A sensitive electroanalytical method is presented for the determination of 4‐hexylresorcinol using adsorptive stripping voltammetry (AdsSV) at a multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode (MWCNT‐BPPGE). This method is also extended to the use of a MWCNT modified screen‐printed electrode (MWCNT‐SPE), thereby demonstrating that this approach can easily be incorporated into a facile and inexpensive electrochemical sensor.  相似文献   

4.
Compared with paraffin oil, the use of ionic liquids as a binder in carbon paste type electrodes was shown to greatly enhance the accumulation of analytes, as illustrated with 17α‐ethynylestradiol as a model. The ionic “liquid” n‐octyl‐pyridinium hexafluorophosphate [C8py][PF6] was most efficient among several ionic liquids investigated. Such preconcentration allowed a [C8py][PF6]‐multiwalled carbon nanotubes (MWCNTs) (95 : 5 w/w) composite electrode to be useful for adsorptive stripping voltammetry. Screen‐printed electrodes modified with [C8py][PF6]‐MWCNTs were developed and were able to achieve high sensitivity during adsorptive stripping voltammetric measurements under optimised conditions.  相似文献   

5.
A facile, rapid and ultra‐sensitive method for the determination of vitamin B12 (cyanocobalamin) at the sub‐nanomolar concentration range by using low‐cost, disposable graphite screen‐printed electrodes is described. The method is based on the cathodic preconcentration of square planar vitamin B12s, as occurred due to the electro reduction of Co(III) center in vitamin B12a to Co(I), at ?1.3 V versus Ag/AgCl/3 M KCl for 40 s. Then, an anodic square wave scan was applied and the height of the peak appeared at ca. ?0.73 V versus Ag/AgCl/3 M KCl, due to the oxidation of Co(I) to Co(II) in the adsorbed molecule, was related to the concentration of the vitamin B12 in the sample. EDTA was found to serve as a key‐component of the electrolyte by eliminating the background signal caused by metal cations impurities contained in the electrolyte (0.1 M phosphate buffer in 0.1 M KCl, pH 3). It also blocks trace metals contained in real samples, thus eliminating their interference effect. The method was optimized to various working parameters and under the selected conditions the calibration curve was linear over the range 1×10?10–8×10?9 mol L?1 vitamin B12 (R2=0.994), while the limit of detection for a signal‐to‐noise ratio of 3 (7×10?11 mol L?1 vitamin B12) is the lowest value of any reported in the literature for the electrochemical determination of vitamin B12. The sensors were successfully applied to the determination of vitamin B12 in pharmaceutical products.  相似文献   

6.
An amperometric method for the determination of iodide ions has been developed using disposable, screen‐printed electrodes. The used sensors have a gold, graphite and platinum working electrodes with an area of about 7 mm2. Calibration curves exhibit a linear relationship between the electrode response and the iodide concentration up to 3.00 mM. The correlation coefficients for all calibration curves varied from 0.988 to 0.998. The relative standard deviations were equal to or less than 5.26 % (n=5). The lowest iodide concentration measured was 100 µM.  相似文献   

7.
Acrylamide (AA) was electrochemically detected and quantified by means of its voltammetric response on carboxylic modified Single‐Walled Carbon Nanotube Screen Printed Electrodes (COOH‐SWCNT‐SPEs). The electroreduction signal of AA was proportional to AA concentration at low values (below 300 µM) and the observed sensitivity was explained in terms of AA adsorption on the COOH‐SWCNT‐SPEs that was demonstrated using the electrochemical response of [Fe(CN)6]3? and [Fe(CN)6]4? and Raman spectroscopy experiments. In order to test the suggested analytic approach (LOD of 0.03 µM, LOQ of 0.04 µM), detection and quantification of AA in fried potatoes was carried out using the proposed electrochemical method and HPLC. Both techniques showed similar contents of AA.  相似文献   

8.
The electrochemical oxidation of pyrogallol at electrogenerated poly(3,4‐ethylenedioxythiophene) (PEDOT) film‐modified screen‐printed carbon electrodes (SPCE) was investigated. The voltammetric peak for the oxidation of pyrogallol in a pH 7 buffer solution at the modified electrode occurred at 0.13 V, much lower than the bare SPCE and preanodized SPCE. The experimental parameters, including electropolymerization conditions, solution pH values and applied potentials were optimized to improve the voltammetric responses. A linear calibration plot, based on flow‐injection amperometry, was obtained for 1–1000 µM pyrogallol, and a slope of 0.030 µA/µM was obtained. The detection limit (S/N=3) was 0.63 µM.  相似文献   

9.
《Electroanalysis》2004,16(20):1660-1666
The electrochemical behavior of the antibiotics rifampicin and rifamycin SV is investigated by cyclic voltammetry at carbon paste and in situ surfactant modified carbon paste electrodes. Both antibiotics adsorb on the unmodified electrodes and show a reversible redox process due to the oxidation of the 6,9‐dihydroxynaphthalene moiety to the corresponding naphthoquinone. This process is used as analytical signal for developing adsorptive voltammetric methods for the determination of the antibiotics. Experimental parameters, such as pH of the supporting electrolyte, accumulation potential and time are optimized. After accumulation from acidic solutions (0.1 M KCl pH 2 or HCl 0.2 M) at ?0.1 or 0 V for 3 min, the differential pulse oxidation peak current changes linearly with the antibiotic concentration in the range 3.5×10?10 M ?5.4×10?9 M or 5×10?11 M ?1.0×10?9 M for rifampicin and rifamycin SV, respectively. Rifamycin SV is not accumulated on carbon paste electrodes modified in situ with the anionic surfactant sodium dodecyl sulfate, whereas rifampicin is readily accumulated on this modified electrodes resulting in a signal enhancement and allowing rifampicin determinations without interference from rifamycin SV. On the other hand, selective determination of rifamycin SV in the presence of rifampicin is achieved by using carbon paste electrodes in situ modified with the cationic surfactant cetyltrimethylammonium chloride.  相似文献   

10.
Water is a vital commodity for every living entity on the planet. However, water resources are threatened by various sources of contamination from pesticides, hydrocarbons and heavy metals. This has resulted in the development of concepts and technologies to create a basis for provision of safe and high quality drinking water. This paper focuses on the simultaneous quantitative determination of three common contaminants, the heavy metals cadmium, lead and copper. Multivariate calibration was applied to voltammograms acquired on in‐house printed carbon‐ink screen‐printed electrodes by the highly sensitive electrochemical method of differential pulse anodic stripping voltammetry (DPASV). The statistically inspired modification of partial least squares (SIMPLS) algorithm was employed to effect the multivariate calibration. The application of data pretreatment techniques involving range‐scaling, mean‐centering, weighting of variables and the effects of peak realignment are also investigated. It was found that peak realignment in conjunction with weighting and SIMPLS led to the better overall root mean square error of prediction (RMSEP) value. This work represents significant progress in the development of multivariate calibration tools in conjunction with analytical techniques for water quality determination. It is the first time that multivariate calibration has been performed on DPASV voltammograms acquired on carbon‐ink screen‐printed electrodes.  相似文献   

11.
This study reports the catalytic oxidation and detection of tea polyphenols (TPs) at glassy‐carbon electrode modified with multiwalled carbon nanotubes‐chitosan (MWCNTs‐CS) film. The adsorption of TPs at the surface of the MWCNTs through π–π conjugation prevents the aggregation of nanotubes and induces a stable MWCNTs suspension in water over 30 days. Based on the adsorptive accumulation of polyphenols at MWCNTs, TPs is sensitively and selectively detected by adsorptive stripping voltammetry. The accumulation conditions and pH effect on the adsorptive stripping detection were examined. The linear range was found to be 100 to 1000 mg L?1 with a detection limit of 10 mg L?1 (S/N=3) for 2.5 min accumulation. Additionally, the MWCNTs‐CS electrode is easily renewed by applying positive potential to remove the adsorbed TPs. This method was successfully applied to determine TPs in commercially available teas with satisfied result compared with that of conventional spectrometric analysis.  相似文献   

12.
Gold nanostructured screen‐printed carbon electrodes are demonstrated to be suitable transducers for the determination of lead using square‐wave voltammetry. Reproducible gold nanostructures have been obtained by direct electrochemical deposition. A calibration plot from 2.5 to 250 μg/L was obtained in acidic solutions of Pb(II) with a reproducibility of 4% (n=10). The detection limit was 0.09 μg/L of lead. The method is then applied to perform a blood lead analysis by adjusting square‐wave parameters in capillary or venous blood with a minimum sample pretreatment and excellent accuracy and reproducibility.  相似文献   

13.
A new procedure for the speciation of chromium by means of differential pulse voltammetry using screen‐printed carbon electrodes (SPCEs) has been proposed. Two different modified carbon working, a Ag/AgCl reference and a carbon counter screen‐printed electrodes have been connected in array mode for the simultaneous determination of Cr(III) and Cr(VI). Mercury films or gold nanoparticles have been ground onto the SPCEs in order to improve their selectivity to each chromium species. The quantification of the peak currents observed at ?1.25 V in Hg‐SPCE and ?0.1 V in AuNPs‐SPCE were carried out. The method has been applied to the speciation of chromium in waste water from a tannery factory.  相似文献   

14.
《Analytical letters》2012,45(4):395-407
A screen-printed electrode sensor has been fabricated by modifying the carbon ink surface with different brands of multiwall carbon nanotubes (MWCNTs) and bismuth film (BiF) for the determination of traces of lead, cadmium and zinc ions by square wave anodic stripping voltammetry. The MWCNTs, from three different sources, were functionalized and dispersed in Nafion (MWCNT-Nafion) solution and placed on screen printed electrodes (MWCNT-Nafion/SPE); bismuth films were then prepared by ex-situ plating of bismuth onto the MWCNT-Nafion/SPE electrodes. The electrochemical characteristics of BiF/MWCNT-Nafion/SPE/ were examined by electrochemical impedance spectroscopy and showed differences; the charge transfer resistance tends to decrease with negative applied potentials. After optimizing the experimental conditions, the square-wave peak current signal is linear in the nmol L?1 range. The lowest limit of detection found for the separate determination of lead, cadmium and zinc were 0.7 nmol L?1, 1.5 nmol L?1, and 11.1 nmol L?1, respectively, with a 120 s deposition time.  相似文献   

15.
The study of electrochemical behavior of amoxicillin (AMX), a β‐lactam antibiotic, is described on a multiwalled carbon nanotubes (MWCNTs) modified electrode by electrochemical impedance spectroscopy (EIS) and adsorptive stripping voltammetry for sensitive determination of AMX in pharmaceutical and human urine samples within a wide pH range from 2.0 to 10.0. Also, studies by Fe2O3 nanoparticles modified carbon paste electrode show that iron oxide impurities in the MWCNTs are not active sites for sensing of amoxicillin. Under optimized conditions, the oxidation peak has two linear dynamic ranges of 0.6–8.0 and 10.0–80.0 μM with a detection limit of 0.2 μM and a precision of <4%.  相似文献   

16.
In this study, we report a simple, low‐cost and rapid electrochemical sensor based on the anodically pretreated screen‐printed carbon electrodes (SPCE*) for the determination of pyrogallol in pH 7.0 buffer solutions. Cyclic voltammetric studies show that SPCE* lowers overpotentials and improve electrochemical behaviour of pyrogallol, compared to untreated SPCE. All experimental parameters were optimized to improve voltammetric responses; excellent analytical features were achieved by flow‐injection amperometric methods. A linear calibration plot was obtained for 10‐1000 μM pyrogallol with a slope of 0.0562 μA/μM. The detection limit (S/N = 3) was 0.33 μM. Interferences from some inorganic salts and organic compounds were studied. The assay was applied to the determination of pyrogallol in tap water and lake water, respectively.  相似文献   

17.
The electrochemical behaviour of thyroxine (T4) is analysed using the disposable screen‐printed carbon electrode (SPCE) in the neutral phosphate buffer solution with cyclic voltammetric technique. The Differential Pulse Voltammetry and Chronoamperometry were employed for sensing of T4. The lowest detection limit of 3 nM was obtained from the differential pulse voltammetric method without preconditioning. The Density Functional Theoretical study of T4 was performed to elucidate the mechanism of oxidation. The analysis of the commercial pharmaceutical samples indicates the validity of the proposed method.  相似文献   

18.
《Electroanalysis》2005,17(7):571-578
A two step non‐competitive affinity method for the trace determination of 1‐hydroxypyrene (1‐OHP) using a disposable molecularly imprinted polymer (MIP) modified screen‐printed carbon electrode (MIP‐SPCE) has been developed. The MIP was synthesized according to a novel strategy, which is described, and is capable of rebinding the phenolic analyte, 1‐hydroxypyrene (1‐OHP), from high pH aqueous organic media, via ionic interactions. In the first step of our method 1‐OHP was accumulated at the MIP‐SPCE from 35% aqueous methanol containing 0.014 M NaOH and 0.14 M NaCl, at open circuit. In the second step, the resulting SPCE with accumulated 1‐OHP was then transferred to fresh, clean phosphate buffered aqueous methanol, and subjected to cyclic voltammetry (CV) or differential pulse voltammetry (DPV). The latter technique proved to be more sensitive at detecting 1‐OHP, with a limit of detection of 182 nM and a linear range to 125 μM on unmodified electrodes. The possible effects of interference by related phenolic compounds in the MIP‐SPCE of 1‐OHP were investigated. Finally the method was evaluated by carrying out 1‐OHP determinations on spiked human urine samples; the recovery of 1‐OHP was 79.4% and the coefficient of variation was found to be 7.7% (n= 4) using a separate MIP‐SPCE for each determination. Therefore, the performance data suggests that the method is reliable at the concentrations examined in this study. The method was found to be superior to the direct determination of 1‐OHP in human urine by DPV alone, which was greatly affected by interference from uric acid.  相似文献   

19.
Commercially available carbon‐based screen‐printed electrodes were studied by cyclic voltammetry and electrochemical impedance spectroscopy in their behavior towards electron transfer to the soluble fast redox probes hexacyanoferrate(III), hexaammineruthenium(III) and methyl‐viologen. Semi‐infinite linear diffusion was observed for hexacyanoferrate(III) probe, with heterogeneous electron transfer rate constants significantly favored on nanotubes‐modified surfaces. Finite diffusion was observed for methyl‐viologen on graphene electrodes, which was reflected in the enhancement of the faradic currents by 4‐folds. Hexaammineruthenium(III) showed mixed diffusion behavior. These characteristics are reflected in the voltammetric behavior of lead(II) and cadmium(II) stripping from in‐situ deposited bismuth layer.  相似文献   

20.
For the early detection of bacterial infection, there is a need for rapid, sensitive, and label‐free assays. Thus, in this study, nanostrucured microbial electrochemical platform is designed to monitor the viability and cell growth of S. aureus. Using multi‐walled carbon nanotube modified screen‐printed electrodes (MWCNTs/SPE), the cyclic voltammetric measurements showed only one irreversible oxidation peak at 600 mV vs Ag/AgCl that accounts for the viable and metabolically active bacterial cells. The assay was optimized and the secreted metabolites, in the extracellular matrix, were directly detected. The peak current showed a positive correlation with viable cell numbers ranging from OD600 nm of 0.1 to 1.1, indicating that the activity of live cells can be quantified. Consequently, responses of viable and non‐viable cells of S. aureus to the effects of antibiotic and respiratory chain inhibitors were determined. Thus, the proposed nanostructure‐based bacterial sensor provides a reasonable and reliable way for real‐time monitoring of live‐dead cell functions, and antibacterial profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号