首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Two new (η3‐allyl)palladium complexes containing the ligand 3,5‐dimethyl‐4‐nitro‐1H‐pyrazole (Hdmnpz) were synthesized and characterized as [Pd(η3‐C3H5)(Hdmnpz)2]BF4 ( 1 ) and [Pd(η3‐C3H5)(Hdmnpz)2]NO3 ( 2 ). The structures of these compounds were determined by single‐crystal X‐ray diffraction to evaluate the intermolecular assembly. Each complex exhibits similar coordination behavior consistent with cationic entities comprised of two pyrazole ligands coordinated with the [Pd(η3‐C3H5)]+ fragment in an almost square‐planar coordination geometry. In 1 , the cationic entities are propagated through strong intermolecular H‐bonds formed between the pyrazole NH groups and BF ions in one‐dimensional polymer chains along the a axis. These chains are extended into two‐dimensional sheet networks via bifurcated H‐bonds. New intermolecular interactions established between NO2 and Me substituents at the pyrazole ligand of neighboring sheets give rise to a three‐dimensional network. By contrast, compound 2 presents molecular cyclic dimers formed through N? H???O H‐bonds between two NO counterions and the pyrazole NH groups of two cationic entities. The dimers are also connected to each other through C? H???O H‐bonds between the remaining O‐atom of each NO ion and the allyl CH2 H‐atom. Those interactions expand in a layer which lies parallel to the face (101).  相似文献   

2.
We show that both palladium(0) and palladium(II) metal centers are capable of coordinating two monodentate MOP (=(R)‐2‐(diarylphosphino)‐1,1′‐binaphthalene) ligands in a pseudo‐cis orientation, despite published statements to the contrary. In addition to [Pd(η3‐C3H5)(MeO? MOP)2]BF4 (MeO? MOP=(R)‐2‐(diphenylphosphino)‐2′‐methoxy‐1,1′‐binaphthalene), the first examples of chiral bis κC1‐prop‐2‐enyl (η1‐CH2CH?CH2) complexes [cis‐Pd(κC1‐C3H5)2(MeO? MOP or MOP)2], are shown to be relatively stable. Further, coordinated MOP and MeO? MOP both show stronger propensity towards novel intramolecular π‐olefin complexation than the CN? MOP analogue. The solid‐state structure of [Pd(fumaronitrile)(MOP)2] is reported.  相似文献   

3.
4.
The η1‐thiocarbamoyl palladium complexes [Pd(PPh3)(η1‐SCNMe2)(η2‐S2R)] (R = P(OEt)2, 2 ; CNEt2, 3 ) and trans‐[Pd(PPh3)21‐SCNMe2)(η1‐Spy)], 4 , (pyS: pyridine‐2‐thionate) are prepared by reacting the η2‐thiocarbamoyl palladium complex [Pd(PPh3)22‐SCNMe2)][PF6], 1 with (EtO)2PS2NH4, Et2NCS2Na, and pySK in methanol at room temperature, respectively. Treatment of 1 with dppm (dppm: bis(diphenylphosphino)methane) in dichloromethane at room temperature gives complex [Pd(PPh3)(η1‐SCNMe2)(η2‐dppm)] [PF6], 5 . All of the complexes are identified by spectroscopic methods and complex 1 is determined by single‐crystal X‐ray diffraction.  相似文献   

5.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVII [1] [Co(g5‐Me5C5)(g3tBu2PPCH–CH3)] from [Co(g5‐Me5C5)(g2‐C2H4)2] and tBu2P–P=P(Me)tBu2 [Co(η5‐Me5C5)(η3tBu2PPCH–CH3)] 1 is formed in the reaction of [Co(η5‐Me5C5)(η2‐C2H4)2] 2 with tBu2P–P 4 (generated from tBu2P–P=P(Me)tBu2 3 ) by elimination of one C2H4 ligand and coupling of the phosphinophosphinidene with the second one. The structure of 1 is proven by 31P, 13C, 1H NMR spectra and the X‐ray structure analysis. Within the ligand tBu2P1P2C1H–CH3 in 1 , the angle P1–P2–C1 amounts to 90°. The Co, P1, P2, C1 atoms in 1 look like a „butterfly”︁. The reaction of 2 with a mixture of tBu2P–P=P(Me)tBu2 3 and tBu–C?P 5 yields [Co(η5‐Me5C5){η4‐(tBuCP)2}] 6 and 1 . While 6 is spontaneously formed, 1 appears only after complete consumption of 5 .  相似文献   

6.
Chiral Half‐sandwich Pentamethylcyclopentadienyl Rhodium(III) and Iridium(III) Complexes with Schiff Bases from Salicylaldehyde and α‐Amino Acid Esters [1] A series of diastereoisomeric half‐sandwich complexes with Schiff bases from salicylaldehyde and L‐α‐amino acid esters including chiral metal atoms, [(η5‐C5H5)(Cl)M(N,O‐Schiff base)], has been obtained from chloro bridged complexes [(η5‐C5Me5)(Cl)M(μ‐Cl)]2 (M = Rh, Ir). Abstraction of chloride from these complexes with Ag[BF4] or Ag[SO3CF3] affords the highly sensitive compounds [(η5‐C5Me5)M(N,O‐Schiff base]+X? (M = Rh, Ir; X = BF4, CF3SO3) to which PPh3 can be added under formation of [(η5‐C5Me5)M(PPh3)(N,O‐Schiff base)]+X?. The diastereoisomeric ratio of the complexes ( 1 ‐ 7 and 11 ‐ 12 ) has been determined from NMR spectra.  相似文献   

7.
Treatment of Pd(PPh3)4 with 5‐bromo‐pyrimidine [C4H3N2Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C4H3N2)(Br)], 1 , by substituting two triphenylphosphine ligands. In acetonitrile solution of 1 in refluxing temperature for 1 day, it do not undergo displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐(η1‐C4H3N2)}2, or bromide ligand to form chelating pyrimidine complex [Pd(PPh3)22‐C4H3N2)]Br. Complex 1 reacted with bidentate ligand, NH4S2CNC4H8, and tridentate ligand, KTp {Tp = tris(pyrazoyl‐1‐yl)borate}, to obtain the η2‐dithiocarbamate η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐S2CNC4H8)], 4 and η2‐Tp η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐Tp)], 5 , respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses.  相似文献   

8.
Hydride abstraction from the gold (disilyl)ethylacetylide complex [( P )Au{η1‐C?CSi(Me)2CH2CH2SiMe2H}] ( P =P(tBu)2o‐biphenyl) with triphenylcarbenium tetrakis(pentafluorophenyl)borate at ?20 °C formed the cationic gold (β,β‐disilyl)vinylidene complex [( P )Au?C?CSi(Me)2CH2CH2Si (Me)2]+B(C6F5)4? with ≥90 % selectivity. 29Si NMR analysis of this complex pointed to delocalization of positive charge onto both the β‐silyl groups and the ( P )Au fragment. The C1 and C2 carbon atoms of the vinylidene complex underwent facile interconversion (ΔG=9.7 kcal mol?1), presumably via the gold π‐disilacyclohexyne intermediate [( P )Au{η2‐C?CSi(Me)2CH2CH2Si (Me)2}]+B(C6F5)4?.  相似文献   

9.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

10.
Reactions of pyrimidine‐2‐thione (HpymS) with PdII/PtIV salts in the presence of triphenyl phosphine and bis(diphenylphosphino)alkanes, Ph2P‐(CH2)m‐PPh2 (m = 1, 2) have yielded two types of complexes, viz. a) [M(η2‐N, S‐ pymS)(η1‐S‐ pymS)(PPh3)] (M = Pd, 1 ; Pt, 2 ), and (b) [M(η1‐S‐pymS)2(L‐L)] {L‐L, M = dppm (m = 1) Pd, 3 ; Pt, 4 ; dppe (m = 2), Pd, 5 ; Pt, 6 }. Complexes have been characterized by elemental analysis (C, H, N), NMR spectroscopy (1H, 13C, 31P), and single crystal X‐ray crystallography ( 1 , 2 , 4 , and 5 ). Complexes 1 and 2 have terminal η1‐S and chelating η2‐N, S‐modes of pymS, while other Pd/Pt complexes have only terminal η1‐S modes. The solution state 31P NMR spectral data reveal dynamic equilibrium for the complexes 3 , 5 and 6 , whereas the complexes 1 , 2 and 4 are static in solution state.  相似文献   

11.
Two series of new dinuclear rare‐earth metal alkyl complexes supported by indolyl ligands in novel μ‐η211 hapticities are synthesized and characterized. Treatment of [RE(CH2SiMe3)3(thf)2] with 1 equivalent of 3‐(tBuN?CH)C8H5NH ( L1 ) in THF gives the dinuclear rare‐earth metal alkyl complexes trans‐[(μη211‐3‐{tBuNCH(CH2SiMe3)}Ind)RE(thf)(CH2SiMe3)]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C?N group is transferred to the amido group by alkyl CH2SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μη211 bonding modes, forming the dinuclear rare‐earth metal alkyl complexes. When L1 is reduced to 3‐(tBuNHCH2)C8H5NH ( L2 ), the reaction of [Yb(CH2SiMe3)3(thf)2] with 1 equivalent of L2 in THF, interestingly, generated the trans‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (major) and cis‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (minor) complexes. The catalytic activities of these dinuclear rare‐earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio‐ and stereoselectivities for isoprene 1,4‐cis‐polymerization.  相似文献   

12.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

13.
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa‐bridging elements. Their preparation was achieved by salt‐elimination reactions of the dilithiated precursor [Mn(η5‐C5H4Li)(η6‐C6H5Li)]?pmdta (pmdta=N,N,N′,N′,N′′‐pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single‐atom‐bridged derivatives, [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] and [Mn(η5‐C5H4)(η6‐C6H5)SiPh2], could also be determined by X‐ray structural analysis. We investigated for the first time the reactivity of these ansa‐cyclopentadienyl–benzene manganese compounds. The reaction of the distannyl‐bridged complex [Mn(η5‐C5H4)(η6‐C6H5)Sn2tBu4] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn?Sn bond to give a triatomic ansa‐bridge. The investigation of the ring‐opening polymerization (ROP) capability of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] showed that an unexpected, unselective insertion into the Cipso?Sn bonds of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] had occurred.  相似文献   

14.
Palladacyclic compounds [Pd(C6H4(C6H5C?O)C?N? R)(N? N)] [X] (R = Et, iPr, 2,6‐iPr2C6H3; N? N = bpy = 2,2′‐bipyridine, or 1,4‐(o,o′‐dialkylaryl)‐1,4‐diazabuta‐1,3‐dienes; [X]? = [BF4]? or [PF6]?) were synthesized from the dimers [{Pd(C6H4(C6H5C?O)C?N? R)(μ‐Cl)}2] and N? N ligands. Their interionic structure in CD2Cl2 was determined by means of 19F,1H‐HOESY experiments and compared with that in the solid state derived from X‐ray single‐crystal studies. [Pd(C6H4(C6H5C?O)C?N? R)(N? N)] [X] complexes were found to copolymerize CO and p‐methylstyrene affording syndiotactic or isotactic copolymers when bpy or 1,4‐(o,o′‐dimethylaryl)‐1,4‐diazabuta‐1,3‐dienes were used, respectively. The reactions with CO and p‐methylstyrene of the bpy derivatives were investigated. Two intermediates derived from a single and a double insertion of CO into the Pd? C bonds were isolated and completely characterized in solution.  相似文献   

15.
Treatment of Pd(PPh3)4 with 2‐bromo‐4‐methylpyridine, C5H3N(CH3)Br, in dichloromethane at ?20 °C causes the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C5H3N(CH3)}(Br)], 2 , by substituting two triphenylphosphine ligands. In a dichloromethane solution of complex 2 at room temperature for 3 h, it undergoes displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐C5H3N(CH3)}2, 3 , in which the two 4‐methylpyridine ligands coordinated through carbon to one metal center and bridging the other metal through the nitrogen atom. Complexes 2 and 3 are characterized by X‐ray diffraction analyses.  相似文献   

16.
The mononuclear amidinate complexes [(η6‐cymene)‐RuCl( 1a )] ( 2 ) and [(η6‐C6H6)RuCl( 1b )] ( 3 ), with the trimethylsilyl‐ethinylamidinate ligands [Me3SiC≡CC(N‐c‐C6H11)2] ( 1a ) and[Me3SiC≡CC(N‐i‐C3H7)2] ( 1b ) were synthesized in high yields by salt metathesis. In addition, the related phosphane complexes[(η5‐C5H5)Ru(PPh3)( 1b )] ( 4a ) [(η5‐C5Me5)Ru(PPh3)( 1b )] ( 4b ), and [(η6‐C6H6)Ru(PPh3)( 1b )](BF4) ( 5 ‐BF4) were prepared by ligand exchange reactions. Investigations on the removal of the trimethyl‐silyl group using [Bu4N]F resulted in the isolation of [(η6‐C6H6)Ru(PPh3){(N‐i‐C3H7)2CC≡CH}](BF4) ( 6 ‐BF4) bearing a terminal alkynyl hydrogen atom, while 2 and 3 revealed to yield intricate reaction mixtures. Compounds 1a / b to 6 ‐BF4 were characterized by multinuclear NMR (1H, 13C, 31P) and IR spectroscopy and elemental analyses, including X‐ray diffraction analysis of 1b , 2 , and 3 .  相似文献   

17.
Reactivity studies of dicarba[2]ferrocenophanes and also their corresponding ring‐opened oligomers and polymers have been conducted in order to provide mechanistic insight into the processes that occur under the conditions of their thermal ring‐opening polymerisation (ROP) (300 °C). Thermolysis of dicarba[2]ferrocenophane rac‐[Fe(η5‐C5H4)2(CHPh)2] (rac‐ 14 ; 300 °C, 1 h) does not lead to thermal ROP. To investigate this system further, rac‐ 14 was heated in the presence of an excess of cyclopentadienyl anion, to mimic the postulated propagating sites for thermally polymerisable analogues. This afforded acyclic [(η5‐C5H5)Fe(η5‐C5H4)‐CH2Ph] ( 17 ) through cleavage of both a Fe?Cp bond and also the C?C bond derived from the dicarba bridge. Evidence supporting a potential homolytic C?C bond cleavage pathway that occurs in the absence of ring‐strain was provided through thermolysis of an acyclic analogue of rac‐ 14 , namely [(η5‐C5H5)Fe(η5‐C5H4)(CHPh)2‐C5H5] ( 15 ; 300 °C, 1 h), which also afforded ferrocene derivative 17 . This reactivity pathway appears general for post‐ROP species bearing phenyl substituents on adjacent carbons, and consequently was also observed during the thermolysis of linear polyferrocenylethylene [Fe(η5‐C5H4)2(CHPh)2]n ( 16 ; 300 °C, 1 h), which was prepared by photocontrolled ROP of rac‐ 14 at 5 °C. This afforded ferrocene derivative [Fe(η5‐C5H4CH2Ph)2] ( 23 ) through selective cleavage of the ?H(Ph)C?C(Ph)H? bonds in the dicarba linkers. These processes appear to be facilitated by the presence of bulky, radical‐stabilising phenyl substituents on each carbon of the linker, as demonstrated through the contrasting thermal properties of unsubstituted linear trimer [(η5‐C5H5)Fe(η5‐C5H4)(CH2)25‐C5H4)Fe(η5‐C5H4)(CH2)25‐C5H4)Fe(η5‐C5H5)] ( 29 ) with a ?H2C?CH2? spacer, which proved significantly more stable under analogous conditions. Evidence for the radical intermediates formed through C?C bond cleavage was detected through high‐resolution mass spectrometric analysis of co‐thermolysis reactions involving rac‐ 14 and 15 (300 °C, 1 h), which indicated the presence of higher molecular weight species, postulated to be formed through cross‐coupling of these intermediates.  相似文献   

18.
The polymers with functionalized alkoxy groups and with narrow molecular weight distribution (Mw/Mn < 1.12) are obtained from the living polymerization of 2‐alkoxy‐1‐methylenecyclopropanes using π‐allylpalladium complex, [(PhC3H4)Pd(μ‐Cl)]2, as the initiator. The polymers with oligoethylene glycol groups in the alkoxy substituent are soluble in water, and hydroboration of the C?C double bond and ensuing addition of the OH groups to C?N bond of alkyl isocyanate produce the polymers with urethane pendant groups. The reaction decreases solubility of the polymer in water significantly. Di‐ and triblock copolymers of the 2‐alkoxy‐1‐methylenecyclopropanes are prepared by consecutive addition of the two or three 2‐alkoxy‐1‐methylenecyclopropane monomers to the Pd initiator. The polymers which contain both hydrophobic butoxy or tert‐butoxy group and hydrophilic oligoethylene glycol group dissolve in water and/or organic solvents, depending on the substituents. The 1H NMR spectrum of poly( 1a ‐b‐ 1h ) (? (CH2C(?CH2)CHOBu)n? (CH2C(?CH2)CH(OCH2CH2)3OMe)m? ) in D2O solution exhibits peaks because of the butoxy and ?CH2 hydrogen in decreased intensity, indicating that the polymer forms micelle particles containing the hydrophilic segments in their external parts. Aqueous solution of the polymer with a small amount of DPH (DPH = 1,6‐diphenyl‐1,3,5‐hexatriene) shows the absorbance due to DPH at concentration of the polymer higher than 5.82 × 10?5 g mL?1. Other block copolymers such as poly( 1b ‐b‐ 1h ) and poly( 1a ‐b‐ 1g ) also form the micelles that contain DPH in their core. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 959–972, 2009  相似文献   

19.
Reaction conditions for the three‐component synthesis of aryl 1,3‐diketones are reported applying the palladium‐catalyzed carbonylative α‐arylation of ketones with aryl bromides. The optimal conditions were found by using a catalytic system derived from [Pd(dba)2] (dba=dibenzylideneacetone) as the palladium source and 1,3‐bis(diphenylphosphino)propane (DPPP) as the bidentate ligand. These transformations were run in the two‐chamber reactor, COware, applying only 1.5 equivalents of carbon monoxide generated from the CO‐releasing compound, 9‐methylfluorene‐9‐carbonyl chloride (COgen). The methodology proved adaptable to a wide variety of aryl and heteroaryl bromides leading to a diverse range of aryl 1,3‐diketones. A mechanistic investigation of this transformation relying on 31P and 13C NMR spectroscopy was undertaken to determine the possible catalytic pathway. Our results revealed that the combination of [Pd(dba)2] and DPPP was only reactive towards 4‐bromoanisole in the presence of the sodium enolate of propiophenone suggesting that a [Pd(dppp)(enolate)] anion was initially generated before the oxidative‐addition step. Subsequent CO insertion into an [Pd(Ar)(dppp)(enolate)] species provided the 1,3‐diketone. These results indicate that a catalytic cycle, different from the classical carbonylation mechanism proposed by Heck, is operating. To investigate the effect of the dba ligand, the Pd0 precursor, [Pd(η3‐1‐PhC3H4)(η5‐C5H5)], was examined. In the presence of DPPP, and in contrast to [Pd(dba)2], its oxidative addition with 4‐bromoanisole occurred smoothly providing the [PdBr(Ar)(dppp)] complex. After treatment with CO, the acyl complex [Pd(CO)Br(Ar)(dppp)] was generated, however, its treatment with the sodium enolate led exclusively to the acylated enol in high yield. Nevertheless, the carbonylative α‐arylation of 4‐bromoanisole with either catalytic or stoichiometric [Pd(η3‐1‐PhC3H4)(η5‐C5H5)] over a short reaction time, led to the 1,3‐diketone product. Because none of the acylated enol was detected, this implied that a similar mechanistic pathway is operating as that observed for the same transformation with [Pd(dba)2] as the Pd source.  相似文献   

20.
A porous perovskite BaCoxFeyZr0.9?x?yPd0.1O3?δ (BCFZ‐Pd) coating was deposited onto the outer surface of a BaCoxFeyZr1?x?yO3?δ (BCFZ) perovskite hollow‐fiber membrane. The surface morphology of the modified BCFZ fiber was characterized by scanning electron microscopy (SEM), indicating the formation of a BCFZ‐Pd porous layer on the outer surface of a dense BCFZ hollow‐fiber membrane. The oxygen permeation flux of the BCFZ membrane with a BCFZ‐Pd porous layer increased 3.5 times more than that of the blank BCFZ membrane when feeding reactive CH4 onto the permeation side of the membrane. The blank BCFZ membrane and surface‐modified BCFZ membrane were used as reactors to shift the equilibrium of thermal water dissociation for hydrogen production because they allow the selective removal of the produced oxygen from the water dissociation system. It was found that the hydrogen production rate increased from 0.7 to 2.1 mL H2 min?1 cm?2 at 950 °C after depositing a BCFZ‐Pd porous layer onto the BCFZ membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号