首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery that gold catalysts could be active for CO oxidation at cryogenic temperatures has ignited much excitement in nanocatalysis. Whether the alternative Pt group metal (PGM) catalysts can exhibit such high performance is an interesting research issue. So far, no PGM catalyst shows activity for CO oxidation at cryogenic temperatures. In this work, we report a sub‐nano Rh/TiO2 catalyst that can completely convert CO at 223 K. This catalyst exhibits at least three orders of magnitude higher turnover frequency (TOF) than the best Rh‐based catalysts and comparable to the well‐known Au/TiO2 for CO oxidation. The specific size range of 0.4–0.8 nm Rh clusters is critical to the facile activation of O2 over the Rh–TiO2 interface in a form of Rh?O?O?Ti (superoxide). This superoxide is ready to react with the CO adsorbed on TiO2 sites at cryogenic temperatures.  相似文献   

2.
Quantum chemistry calculations were carried out, using ONIOM2 methodology, to investigate the CO adsorption and oxidation on gold supported on Silicoaluminophospates (SAPO) molecular sieves Au/SAPO‐11 catalysts. Two models were studied, one containing one Au atom per site (Au? SAPO‐11), and the other with two Au atoms per site (Au2? SAPO‐11). The results reveal that the CO adsorption and oxidation are exothermic on Au/SAPO11 with an ΔE of ?41.0 kcal/mol and ΔE = ?52.0 kcal/mol, for the adsorption and oxidation, respectively. On the Au2? SAPO‐11 model, the CO adsorption and oxidation reaction occur, with a ΔE of ?29.7 kcal/mol and ?52 kcal/mol, respectively. According to our results, the oxidation reaction exhibits an Eley‐Rideal type mechanism with adsorbed CO. The theoretical calculations reveal that this type of material could be interesting to disperse Au and consequently to strengthen its catalytic use for different reactions. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2573–2582, 2010  相似文献   

3.
Palladacyclic compounds [Pd(C6H4(C6H5C?O)C?N? R)(N? N)] [X] (R = Et, iPr, 2,6‐iPr2C6H3; N? N = bpy = 2,2′‐bipyridine, or 1,4‐(o,o′‐dialkylaryl)‐1,4‐diazabuta‐1,3‐dienes; [X]? = [BF4]? or [PF6]?) were synthesized from the dimers [{Pd(C6H4(C6H5C?O)C?N? R)(μ‐Cl)}2] and N? N ligands. Their interionic structure in CD2Cl2 was determined by means of 19F,1H‐HOESY experiments and compared with that in the solid state derived from X‐ray single‐crystal studies. [Pd(C6H4(C6H5C?O)C?N? R)(N? N)] [X] complexes were found to copolymerize CO and p‐methylstyrene affording syndiotactic or isotactic copolymers when bpy or 1,4‐(o,o′‐dimethylaryl)‐1,4‐diazabuta‐1,3‐dienes were used, respectively. The reactions with CO and p‐methylstyrene of the bpy derivatives were investigated. Two intermediates derived from a single and a double insertion of CO into the Pd? C bonds were isolated and completely characterized in solution.  相似文献   

4.
Nanocatalysts Pd, Pd8Ni2, Pd8Sn2 and Pd8Sn1Ni1 supported on multi‐walled carbon nanotubes (MWCNTs) were successively synthesized by the chemical reduction method in the glycol‐water mixture solvent. Transmission electron microscopy results show that the prepared Pd, Pd8Ni2, Pd8Sn2 and Pd8Sn1Ni1 nanoparticles are uniformly dispersed on the surface of MWCNTs. The average particle sizes of the nanocatalysts are 3.5–3.8 nm. Electroactivity of the prepared catalysts towards oxidation of ethanol, 1‐propanol, 2‐propanol, n‐butanol, iso‐butanol and sec‐butanol (C2? C4 alcohols) in alkaline medium was studied by cyclic voltammetry and chronoamperometry. The current density obtained for the electrooxidation of C2? C4 alcohols depends on the catalysts and the various structures of the alcohols. Addition of Sn or/and Ni to Pd nanoparticles enhances the electroactivity of the Pd/MWCNT catalyst. Furthermore, the ternary Pd8Sn1Ni1/MWCNT catalyst presents the highest electroactivity for the oxidation of C2? C4 alcohols among the prepared catalysts. Electrocatalytic activity order among propanol isomers and butanol isomers is as follows respectively: 1‐propanol > 2‐propanol, and n‐butanol > iso‐butanol > sec‐butanol > tert‐butanol. This is consistent with the Mulliken charge value of the carbon atom bonded with hydroxyl group in the corresponding alcohol molecule.  相似文献   

5.
Triazole‐based ligands, tris (triazolyl)methanol (Htbtm), bis (triazolyl)‐phenylmethanol (Hbtm), and phenyl (pyridin‐2‐yl)(triazolyl)methanol (Hpytm), with differences in ligand denticity (i.e., bidentate and tridentate) and type of N donors (i.e., triazole and pyridine) were functionalized onto a silica support to produce the corresponding SiO2‐ L ( L  = tbtm, btm, pytm). Subsequent reactions with Pd (CH3COO)2 in CH2Cl2 yielded Pd/SiO2‐ L . ICP‐MS reveals that Pd loadings are higher with increased N loadings, resulting in the following trend: Pd/SiO2‐tbtm (0.83 mmol Pd g?1) > Pd/SiO2‐btm (0.65 mmol Pd g?1) ~ Pd/SiO2‐pytm (0.63 mmol Pd g?1). Meanwhile, TEM images of the used Pd/SiO2‐ L catalysts after the first catalytic cycle show that the mean size of Pd NPs is highest with Pd/SiO2‐pytm (8.5 ± 1.5 nm), followed by Pd/SiO2‐tbtm (6.4 ± 1.6 nm) and Pd/SiO2‐btm (4.8 ± 1.3 nm). Based on TONs, catalytic studies toward aerobic oxidation of benzyl alcohol to benzaldehyde at 60 °C in EtOH showed that Pd/SiO2‐pytm possessed the most active surface Pd(0) atoms, most likely as a result of more labile properties of the pyridine–triazole ligand compared to tris‐ and bis (triazolyl) analogs. ICP‐MS and TEM analysis of Pd/SiO2‐btm indicate minimal Pd leaching and similar average Pd NPs sizes after 1st and 5th catalytic runs, respectively, confirming that SiO2‐btm is an efficient Pd NPs stabilizer. The Pd/SiO2‐btm catalyst was also active toward aerobic oxidation of various benzyl alcohol derivatives in EtOH and could be reused for at least 7 reaction cycles without a significant activity loss.  相似文献   

6.
Thionine (TH) adsorbed on multiwalled carbon nanotubes (MWCNTs) increases the load and dispersion of platinum nanoparticles (PtNPs) generated by chemical reduction of H2PtCl6 with NaBH4. Under the optimum conditions, the PtNPs‐TH‐MWCNTs/Au electrode electrocatalyzed the reduction and oxidation of H2O2 with high sensitivity, and after glucose oxidase (GOx) adsorption it responded to glucose concentration with a sensitivity of 0.14 A M?1 cm?2. The cyclic voltammetric cathodic peak current for NO2? reduction on PtNPs‐TH‐MWCNTs/Au responded linearly to NO2? concentration from 0.5 to 150 µM, with a sensitivity of 5.52 A M?1 cm?2 and a detection limit of 0.2 µM.  相似文献   

7.
The reactivity of palladium complexes of bidentate diaryl phosphane ligands (P2) was studied in the reaction of nitrobenzene with CO in methanol. Careful analysis of the reaction mixtures revealed that, besides the frequently reported reduction products of nitrobenzene [methyl phenyl carbamate (MPC), N,N′‐diphenylurea (DPU), aniline, azobenzene (Azo) and azoxybenzene (Azoxy)], large quantities of oxidation products of methanol were co‐produced (dimethyl carbonate (DMC), dimethyl oxalate (DMO), methyl formate (MF), H2O, and CO). From these observations, it is concluded that several catalytic processes operate simultaneously, and are coupled via common catalytic intermediates. Starting from a P2Pd0 compound formed in situ, oxidation to a palladium imido compound P2PdII?NPh, can be achieved by de‐oxygenation of nitrobenzene 1) with two molecules of CO, 2) with two molecules of CO and the acidic protons of two methanol molecules, or 3) with all four hydrogen atoms of one methanol molecule. Reduction of P2PdII?NPh to P2Pd0 makes the overall process catalytic, while at the same time forming Azo(xy), MPC, DPU and aniline. It is proposed that the Pd–imido species is the central key intermediate that can link together all reduction products of nitrobenzene and all oxidation products of methanol in one unified mechanistic scheme. The relative occurrence of the various catalytic processes is shown to be dependent on the characteristics of the catalysts, as imposed by the ligand structure.  相似文献   

8.
Nanoporous silver (NPS) is fabricated by selectively dissolving Al from AgAl alloys in corrosive electrolytes at room temperature. Electron spectroscopy characterizations demonstrate that the NaOH electrolyte is beneficial to the formation of a three‐dimensional bicontinuous porous nanostructure with uniform and tunable pore and ligament dimensions of a few tens of nanometers, while processing in HCl electrolyte easily lead to coarsened porous nanostructures. The high‐surface‐area Ag nanostructures are demonstrated as novel effective template materials to the construction of nanotubular mesoporous Pt/Ag and Pd/Ag alloy structures, which are realized via room temperature galvanic replacement reactions with H2PtCl6 and K2PdCl4 solutions by adding a high concentration of Cl? ions as a coordinating agent. Electrochemical measurements indicate that the resulting hollow and porous bimetallic nanostructures show enhanced electrocatalytic activities and CO‐tolerance with better durability toward methanol and formic acid oxidation due to alloying with Ag.  相似文献   

9.
The co‐adsorption of O2 and CO on anionic sites of gold species is considered as a crucial step in the catalytic CO oxidation on gold catalysts. In this regard, the [Au2O2(CO)n]? (n=2–6) complexes were prepared by using a laser vaporization supersonic ion source and were studied by using infrared photodissociation spectroscopy in the gas phase. All the [Au2O2(CO)n]? (n=2–6) complexes were characterized to have a core structure involving one CO and one O2 molecule co‐adsorbed on Au2? with the other CO molecules physically tagged around. The CO stretching frequency of the [Au2O2(CO)]? core ion is observed around =2032–2042 cm?1, which is about 200 cm?1 higher than that in [Au2(CO)2]?. This frequency difference and the analyses based on density functional calculations provide direct evidence for the synergy effect of the chemically adsorbed O2 and CO. The low lying structures with carbonate group were not observed experimentally because of high formation barriers. The structures and the stability (i.e., the inertness in a sense) of the co‐adsorbed O2 and CO on Au2? may have relevance to the elementary reaction steps on real gold catalysts.  相似文献   

10.
Glycerol (C3H8O3), a waste product of biodiesel, is considered as a suitable substrate for electro‐oxidation process to generate high value‐added products. A suitable active catalyst could improve the yield of desirable organic compounds from electro‐oxidation of glycerol. In this work, palladium nanoparticles supported over activated multi‐walled carbon nanotubes (MWCNTs) with varying loadings of 5 %–40 % were prepared using chemical reduction method and used to study their potential for electro‐oxidation of glycerol to produce various high value‐added products. The catalysts were characterized by different physicochemical methods, such as X‐ray diffraction (XRD), N2 adsorption‐desorption, and Transmission electron microscopy (TEM), whereas the electro‐oxidation activity of the catalysts was analysed using cyclic voltammetry (CV) and chronoamperometry (CA), and the products were identified by high performance liquid chromatography (HPLC). The electrochemical surface area (SESA) and mass activity (MA) were increased from 176.98 m2 g?1 to 282.29 m2 g?1 and 12.22 mA mg?1 to 49.53 mA mg?1 by increasing the Pd‐loading from 5 % to 20 %, respectively. While the further increase to 40 % Pd loading, the SESA and MA values decreased to 231.45 m2 g?1 and 47.63 mA mg?1respectively. The results found that the optimum 20 % Pd‐loading showed the excellent electrochemical properties due to uniform distribution of Pd‐metal particles over MWCNTs. High performance liquid chromatography (HPLC) showed the tartronic acid, glyceric acid and glyceraldehyde as dominant products. Mechanism of the reaction has also been proposed based on product distribution.  相似文献   

11.
The Pd, AuPd, and ZrO2 nanoparticle–decorated functionalised multiwalled carbon nanotubes (f‐MWCNTs) were reported as efficient catalysts of formic acid (FA) electro‐oxidation. Different preparation conditions influence their chemical and structural properties analysed by X‐ray photoelectron spectroscopy aided with the quantitative analysis of surfaces by electron spectroscopy. Different reduction procedures such as NaBH4, a polyol microwave‐assisted method (PMWA), and a high pressure microwave reactor (HPMWR) were applied for decorating ZrO2/f‐MWCNTs with Pd and AuPd nanoparticles. The ZrO2 nanoparticles are attached through oxygen groups to the surface of f‐MWCNTs. In NaBH4 and HPMWR procedures, Pd nanoparticles precipitate predominantly on ZrO2 of nearly nominal stoichiometry, whereas in PMWA procedure, Pd and AuPd nanoparticles precipitate predominantly on the surface of f‐MWCNTs, bridging with oxygen groups and ZrOx (x < 2) and leading to Pd‐O‐Zr phase formation. Strong reducing procedures (NaBH4 and FA) led to smaller Pd nanoparticle size, Pd oxide content, and PdOx overlayer thickness in contrary to weak reduction procedures (HPMWR and PMWA). The highest content of Pd‐O‐Zr phase appeared for Pd predominant precipitation on ZrO2 nanoparticles (HPMWR) in contrary to Pd and AuPd predominant precipitation on surface of f‐MWCNTs (NaBH4 ~ FA > PMWA). Larger content of Pd‐O‐Zr phase in AuPd‐decorated ZrO2/f‐MWCNTs in contrary to Pd‐decorated sample (PMWA) could be justified by different electronic properties of nanoparticles. The FA treatment of Pd and AuPd‐ZrO2/f‐MWCNTs samples provided decreasing Pd oxide content, overlayer thickness, nanoparticle size, increasing nanoparticle surface coverage and density, amount of Pd‐O‐Zr, what results from reduction of oxygen groups bridging with Pd and ZrOx nanoparticles, also through Pd‐O‐Zr phase.  相似文献   

12.
Time‐of‐flight mass spectrometry experiments demonstrated that laser ablation generated and mass selected Au2TiO4? cluster anions can unexpectedly oxidize three CO molecules in an ion trap reactor. This is an improvement on the more commonly observed oxidation of at most two CO molecules by a doped cluster. Quantum chemistry calculations were performed to rationalize the reactions. The lowest energy isomer of Au2TiO4? contains a superoxide unit, the participation of which in CO oxidation can be promoted by the Au2 dimer. The Au2 dimer functions as a rather flexible electron reservoir in each CO oxidation step in terms of the release and storage of electrons to drive the dissociation of superoxide to peroxide and then to lattice oxygen atoms, which can be removed by reaction with CO molecules. This gas‐phase study enriches our understanding toward the nature of reactive oxygen species involved in gold‐catalyzed oxidation reactions.  相似文献   

13.
The in situ open‐circuit voltages (Voc) and the in situ photoconductivities have been measured to study electron behavior in photocatalysis and its effect on the photocatalytic oxidation of methanol. It was observed that electron injection to the conduction band (CB) of TiO2 under light illumination during photocatalysis includes two sources: from the valence band (VB) of TiO2 and from the methanol molecule. The electron injection from methanol to TiO2 is slower than that directly from the VB, which indicates that the adsorption mode of methanol on the TiO2 surface can change between dark and illuminated states. The electron injection from methanol to the CB of TiO2 leads to the upshift of the Fermi level of electrons in TiO2, which is the thermodynamic driving force of photocatalytic oxidation. It was also found that the charge state of nano‐TiO2 is continuously changing during photocatalysis as electrons are injected from methanol to TiO2. Combined with the apparent Langmuir–Hinshelwood kinetic model, the relation between photocatalytic kinetics and electrons in the TiO2 CB was developed and verified experimentally. The photocatalytic rate constant is the variation of the Fermi level with time, based on which a new method was developed to calculate the photocatalytic kinetic rate constant by monitoring the change of Voc with time during photocatalysis.  相似文献   

14.
To obtain noble metal catalysts with high efficiency, long‐term stability, and poison resistance, Pt and Pd are assembled in highly ordered and vertically aligned TiO2 nanotubes (NTs) by means of the pulsed‐current deposition (PCD) method with assistance of ultrasonication (UC). Here, Pd serves as a dispersant which prevents agglomeration of Pt. Thus Pt–Pd binary catalysts are embed into TiO2 NTs array under UC in sunken patterns of composite spherocrystals (Sps). Owing to this synthesis method and restriction by the NTs, the these catalysts show improved dispersion, more catalytically active sites, and higher surface area. This nanotubular metallic support material with good physical and chemical stability prevents catalyst loss and poisoning. Compared with monometallic Pt and Pd, the sunken‐structured Pt–Pd spherocrystal catalyst exhibits better catalytic activity and poison resistance in electrocatalytic methanol oxidation because of its excellent dispersion. The catalytic current density is enhanced by about 15 and 310 times relative to monometallic Pt and Pd, respectively. The poison resistance of the Pt–Pd catalyst was 1.5 times higher than that of Pt and Pd, and they show high electrochemical stability with a stable current enduring for more than 2100 s. Thus, the TiO2 NTs on a Ti substrate serve as an excellent support material for the loading and dispersion of noble metal catalysts.  相似文献   

15.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au? M (M=Au, Pd, and Pt) core–shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au? Au, Au? Pd, and Au? Pt core–shell nanostructures with typical porous shells. Moreover, the Au? Au isomeric core–shell nanostructure is reported for the first time. The lower oxidation states of AuI, PdII, and PtII are supposed to contribute to the formation of porous core–shell nanostructures instead of yolk‐shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au? Pd core–shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core–shell nanostructures. As expected, the Au? Pd core–shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (If/Ib is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au? M (M=Au, Pd, and Pt) core–shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface‐enhanced Raman scattering, and so forth.  相似文献   

16.
Highly conductive palladium/titanium dioxide (Pd/TiO2) nanofibers have been successfully fabricated by electroless-plating Pd on the electrospun TiO2 nanofibers. The application of Pd/TiO2 nanofibers for electrooxidation of glycerol was demonstrated. The results showed that Pd/TiO2 nanofibers can greatly promote glycerol electrooxidation in alkaline medium, and both glycerol and KOH concentrations had an effect on the peak current density and the peak potential. The mechanism of desorption of poisoning intermediate was discussed by changing the upper potential limit. The application of the Pd/TiO2 nanofibers for electrooxidation of methanol, ethylene glycol, and 1,2-propanediol was also demonstrated.  相似文献   

17.
Seven Pd‐complexes with optically active bis[dihydroxazole]‐type ligands promote asymmetric alternating copolymerization of 7‐methylenebicyclo[4.1.0]heptane with CO, which produces an optically active polyketone, ? [C(?CH2)? CO? C6H10]n? . The reaction under increased CO pressure (> 5 atm) affords a polymer that contains monomer units with the cis‐cyclohexane‐1,2‐diyl group almost exclusively. The polyketone exhibits positive or negative optical rotation depending on the Pd‐complex. The highest and lowest [α] of the polymer obtained are + 68.9 and ? 76.1, respectively. Addition of dibutylcuprate to a solution of the polymer in the presence of Me3SiCl transforms the enone groups of the polymer to silyl enol ether groups, which are ozonized to (silyloxy)oxirane moieties.  相似文献   

18.
To improve the service life of SnO2?Sb electrodes in degradation of refractory wastewater, we report anodic information of tin oxide antimony on top of Nb?TiO2 nanotubes (Nb?Ti/Nb?TiO2?NTs/ATONPs) prepared through screen‐printing. It was found that the Nb?Ti/Nb?TiO2?NTs/ATONPs anodes presented a significantly enhanced in electro‐catalytic oxidation performance (in Acid Red 73) compared to titanium‐based tin antimony electrodes (Ti/ATONPs). Additionally, the electrochemical properties and the stability were further studied by the electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), cyclic voltammetry (CV), chronoamperometry (CA) measurements and accelerated life test, respectively. These results indicated that Nb?TiO2?NTs/ATONPs anode possessed Nb?TiO2 nanotubes which exhibited a higher oxygen evolution potential (2.24 V vs. Ag/AgCl), as well as a better wettability, a larger current at constant potential and 2.1 times longer lifetime than the conventional Ti/ATONPs anode.  相似文献   

19.
Tungsten carbide/titanium oxide (WC/titanium dioxide (TiO2)) particles are prepared by microwave-assisted heating in conjunction with ionic liquid and the subsequent reduction–carbonization. The platinum particles are loaded on the WC/TiO2 to prepare Pt-WC/TiO2. The electrocatalytic performances of the Pt-WC/TiO2 toward methanol oxidation are evaluated by cyclic voltammetry, chronoamperometry, and the CO stripping tests. It is found that electrocatalytic activity of Pt-WC/TiO2 is enhanced by adding ionic liquid (IL) during sample preparation. The results indicate that better performance toward methanol oxidation and higher tolerance to CO are achieved with an optimal addition of 1.5 ml 1-methyl-imidazoliumtetr-afluoroborate for preparing Pt-WC/TiO2. To investigate the function of IL, the phase structure and morphology of samples at different stages during preparation are examined by X-ray diffraction and transmission electron microscopy. Ionic liquid is found to act as not only a good solvent offering the excellent microwave absorption, but also a structure-directing agent to control the morphology and structure of sample, which affect the activity of the final catalysts.  相似文献   

20.
In this work, an amperometric H2O2 sensor based on TiO2/MWCNTs electrode is reported. TiO2 nanoparticles were synthesized on vertically aligned multiwalled carbon nanotube (MWCNT) arrays by electrodeposition. The morphology of the TiO2/MWCNTs was characterized by scanning electron microscopy (SEM). The electrochemical performance of the TiO2/MWCNTs electrode for detection of H2O2 was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry. The TiO2/MWCNTs electrode displays high electrocatalytic activity towards oxidation of H2O2 in 0.1 M phosphate buffer solution (PBS, pH 7.4). At an applied potential of +0.40 V, the TiO2/MWCNTs electrode exhibits a linear dependence (R=0.998) in the H2O2 concentration up to 15.0×10?3 M with a sensitivity of 13.4 μA mM?1 and detection limit of 4.0×10?7 M with signal/noise=3. The optimal response time is less than 5 s with addition of 1 mM H2O2. The TiO2/MWCNTs electrode presents stable, high sensitivity and also exhibits fast amperometric response to the detection of H2O2, which is promising for the development of H2O2 sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号