首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a three‐phase hollow fiber liquid‐phase microextraction (HF‐LPME) method combined with high‐performance liquid chromatography (HPLC) was developed for the determination of hypoxanthine (HX), xanthine (Xan) and adenine (A) and then for the first time successfully applied to the analysis of HX, Xan and A in Alysicarpus vaginalis (L.) DC. medicinal materials. Different factors affecting the HF‐LPME procedure were investigated and optimized. Under optimal extraction conditions (1‐octanol as organic solvent, pH of the donor and acceptor phase 10.0 and 3.5, respectively, extraction time 40 min, stirring rate 800 rpm and salt addition 10%, w/v), HX, Xan and A could be determined within the test ranges with a good correlation coefficient (r2 > 0.9992). The limit of detection for HX, Xan and A was 153, 173 and 97 ng/mL, respectively, and the intra‐ and inter‐day relative standard deviations were no more than 9.8%. The content of HX, Xan and A in Alysicarpus vaginalis (L.) DC. medicinal materials was 120.40, 18.37 and 62.75 µg/g, respectively. This procedure afforded a convenient, sensitive, accurate and inexpensive method with a high extraction efficiency for determination of HX, Xan and A. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Gd-doped CdO thin films with various Gd concentrations have been prepared on glass and Si wafer substrates using sol gel technique. The films were characterised by X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and dc-electrical measurements. XRF method was used to determine the %Gd content in the films while XRD was used to study the influence of Gd doping on the detailed crystalline structure. Experimental data indicate that Gd3+ doping with level of less than 2.4% slightly enlarge the CdO crystalline unit cell. The bandgap (E g) of Gd-doped CdO suffers narrowing by about 13% due to a small (0.2%) doping level but with %Gd doping level larger than 2.4%, E g becomes wider than that of undoped CdO. The electrical behaviours of the Gd-doped CdO films show that they are degenerate semiconductors. The 2% Gd-doped CdO film shows increase in its mobility by about 92%, conductivity by 320%, and carrier concentration by 127%, relative to undoped CdO film. From transparent-conducting-oxide point of view, the Gd doping of CdO by sol gel method is not effective. Finally, the absorption in the NIR spectral region was investigated to be due to the free electrons.  相似文献   

3.
Rare gas hydride molecules and triatomic hydrogen molecules were produced in a Cossart-type plasma beam Penning tube specially designed for laser spectroscopic work. A cw dye laser was used to stimulate transitions from theB 2 rovibrational levels to theA 2+ levels of argonhydride (40ArH) and argondeuteride (40ArD). The transitions were detected by measuring the decrease of the spontaneous emission from the upper levels, which clearly shows the expected population inversion between the two participating electronic states. With this first laserspectroscopic work on argonhydride and argon deuteride, the classification of the lines of theB 2 A 2+ band as given by Johns 1970 could be checked and was found to be consistent*. Furthermore theQ branches of these bands for ArH and ArD could be completely resolved into their single lines and their wavelengths were measured. The latter allowed the difference between the rotational constants of theA andB electronic states to be directly determined. The method was also applied to triatomic hydrogen. D3. It should be useful for classifying more complicated bands of ArH and of KrH and XeH, which can also be produced in this tube.In later theoretical work theB 2 state was called 22 state [13] andE 2 state [12], respectively  相似文献   

4.
《Electroanalysis》2005,17(17):1534-1539
The construction, performance, and applications of a novel ytterbium(III) sensor based on N‐(2‐pyridyl)‐N′‐(2‐methoxyphenyl)‐thiourea (PMT), as an excellent carrier, in plasticized poly(vinyl chloride) PVC matrix, is described. The influences of membrane composition and pH on the potentiometric response of the sensor were investigated. The sensor exhibits a nice Nernstian response for Yb(III) ion over a wide concentration range of 4 decades of concentration (1.0×10?6–1.0×10?2 M), and a detection limit of 5.0×10?7 M. The response time of the electrodes is between 8 and 10 s, depending on the concentration of ytterbium(III) ions. The proposed sensor can be used for about 8 weeks without any considerable divergence in potential. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. The best performance was observed for the membrane containing; 30% PVC, 59% o‐nitrophenyloctyl ether (NPOE) as solvent mediator, 7% PMT, and 4% sodium tetraphenyl borate (NaTPB). It was successfully applied as indicator electrodes in the potentiometric titration of Yb(III) with EDTA and for the determination of fluoride ion in two mouth wash formulations. The proposed La(III) sensor was found to work well under laboratory conditions. It was also used as an indicator electrode in titration of a 1.0×10?4 M of Yb(III) with a standard EDTA solution (1.0×10?2 M). It was also used for determination of Yb(III) ion in Xenotime .  相似文献   

5.
This paper overviews three living cationic polymerization systems (for styrene, p-methoxystyrene, and isobutyl vinyl ether) that are, in common, featured by: (i) specifically in nonpolar solvents, the use of the hydrogen halide/metal halide initiating systems (HX/MXn; X: I, Br, Cl; MXn: ZnX2, SnCl4), which generate a living growing carbocation stabilized by a nucleophilic counteranion (X…MXn); (ii) specifically in polar solvents, the use of externally added ammonium salts (nBu4N+Y; Y: I, Br, Cl), which permit the generation of living species from HX/MXn by providing nucleophilic halogen anions Y, either the same as or different from the halogen X in HX.  相似文献   

6.
The spectrophotometric determination of vanadium(V) as a mixed thiocyanate-3-hydroxy-2-methyl-1-phenyl-4-pyridone (HX) complex and as a mixed thiocyanate-3-hydroxy-2-methyl-1-(4-tolyl)-4-pyridone (HY) complex is described. The extracted complexes in chloroform have a maximum absorbance at 450 and 650 nm. The optimal conditions for the extraction and spectrophotometric determination of vanadium(V) are determined. The solutions of the V-SCN-HX and V-SCN-HY complexes in chloroform obey Beer's law in the range 1–10 ppm of vanadium, and are stable for at least 24 hr. The molar absorptivity of the method is 6.8 × 103 liters mol?1 cm?1. The molar ratio V:SCN:HX (HY) of the extracted complex is 1:1:2.  相似文献   

7.
Infrared spectra of matrices codeposited Ar/HX (X=Cl, Br) with Ar/H2CCO mixtures have been examined. Isotopic substitutions (HX, DX, H2CCO, D2CCO) showed that ketene formed the 1:1 hydrogen-bonded complex with HX. The HX stretching modes were observed at 2684 cm−1 in the H2CCO–HCl complex and at 2384 cm−1 in the H2CCO–HBr complex. The ν1 modes of the ketene submolecules were shifted to low frequency and the ν9 modes to high frequency. It was proposed for the structure of the complex that the acid proton is bonded to the C=C pi electron system.  相似文献   

8.
The construction and performance characteristics of a new potentiometric PVC membrane sensor for the determination of sodium dodecyl sulfate (SDS) are described. The sensor was based on the use of an N-cetyl-N,N,N trimethyl ammonium (CTA) dodecyl sulfate (DS) ion pair as ion exchange sites in PVC matrix in the presence of o-nitrophenyl octylether as plasticiser. The sensor exhibited a fast, stable, and near-Nernstian response for SDS over the concentration range of 1 × 10?3 to 10?6 M at 25°C and the pH range 4–8.5 with anionic slope of 52.5 ± 0.5 mV decade?1. The lower detection limit was 3 × 10?6 M, and the response time was 25 s. Selectivity coefficients of SDS with respect to a number of different species were investigated. There were negligible interferences caused by most of the investigated anions. The determination of 1.0–280.0 µg mL?1 of SDS in aqueous solutions showed an average recovery of 99.1%, and the mean relative standard deviation was 1.4 at 100 µg mL?1. The results obtained in the determination of SDS in liquid soap, water and in some pharmaceutical preparations compared favourably with those obtained by the Methylene Blue active substance method (MBAS). In the present investigation, the DS sensor has been used as an end-point indicator electrode for some precipitation titration reactions, e.g. titration of SDS with CTMABr and cetylpyridinium chloride with SDS.  相似文献   

9.
《Analytical letters》2012,45(5):750-762
A simple, low cost sensor was developed for the voltammetric determination of hydrogen peroxide in mouthwash and dental whitening gel based on multi-walled carbon nanotubes incorporated with hemin. The sensor showed electrocatalytic activity toward the reduction of hydrogen peroxide in 0.05 mol L?1 Tris-HCl buffer solution (pH 7.0) using cyclic voltammetry. The optimum composition of paste was 20:10:70% (m/m/m) (multi-walled carbon nanotubes:hemin:mineral oil). A linear plot of the square root of scan rate vs. cathodic peak current showed that reduction of hydrogen peroxide is diffusion controlled. Using linear sweep voltammetry, the analytical curve ranged from 0.2 up to 1.4 mmol L?1 (r = 0.9996) with a sensitivity of 3.62 × 10?2 mA mol?1 L. The limits of detection and quantification were found to be 12.5 µmol L?1 and 41.7 µmol L?1, respectively. The developed method was applied for hydrogen peroxide determination in dental formulations. The results were compared with a volumetric method as a reference technique. No significant differences at the 95% level (paired student t test) were observed, thus demonstrating the accuracy of the sensor for the analysis of real samples.  相似文献   

10.
A potentiometric poly(vinyl chloride) membrane sensor for determination of saccharin is described. It is based on the use of Aliquat 336S-saccharinateion-pair as an electroactive material in plasticized PVC membranes with o-nitrophenyloctylether or dioctylphthalate. The sensor is conditioned for at least two days in 0.1 mol L−1 sodium saccharinate before use. It exhibits fast, stable and Nernstian response for saccharinate ions over the concentration range of 1.0 × 10−1–5.0 × 10−5 mol L−1 and pH range of 4.5–11. The sensor is used for determination of saccharin in some dosage forms. Results with an average recovery of 101% and a mean standard deviation of 0.2% are obtained which is compared favourably with data obtained using the British pharmacopoeia method. The sensor shows reasonable selectivity towards saccharin in presence of many anions and natural sweeteners.  相似文献   

11.
Within this paper, a glassy carbon electrode modified with single‐walled carbon nanotubes (SWCNTs?GCE) was prepared, and employed for the determination of clorsulon (Clo), which is a frequently used veterinary drug against common liver fluke. The comprehensive topographical and electrochemical characterizations of bare GCE and SWCNTs?GCE were performed by atomic force microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Significantly enhanced electrochemical characteristics of SWCNTs?GCE toward a ferrocyanide/ferricyanide redox couple was observed when compared to bare GCE. Further, the prepared sensor was applied for the voltammetric determination of Clo, which was electrochemically investigated for the first time in this work. Voltammetric experiments were performed using square‐wave voltammetry with optimized parameters in phosphate buffer solution, pH 6.8, which was selected as the most suitable medium for the determination of Clo. The corresponding current at approx. +1.1 V increased linearly with Clo concentration within two linear dynamic ranges of 0.75–4.00 μmol L?1 (R2=0.9934) and 4.00–15.00 μmol L?1 (R2=0.9942) with a sensitivity for the first calibration range of 0.76 μA L μmol?1, a limit of detection of 0.19 μmol L?1, and a limit of quantification of 0.64 μmol L?1. The developed method was subsequently applied for quantitative analysis of Clo in milk samples with results proving high repeatability and recovery.  相似文献   

12.
The Fast Atom Bombardment (FAB) mass spectra of the alkali metal chlorides (Na, K, Cs) and fluorides (Na, K, Rb, Cs) were obtained from solids and a glycerol matrix, using a fast atom bombardment source. From solids the fluorides exhibited an ion abundance enhancement of the well-known [M(MF)4]+ cluster, which decreased with increasing cation size. A gradual decrease in the n=4 enhancement was observed as the salt was diluted with glycerol. In the chlorides only sodium chloride showed the n=4 relative enhancement. The mass spectra of the salts from a glycerol matrix at molar ratios of 1:1 to 1:10 showed that the spectra of the 1:1 solutions were similar to those from the solids, while glycerol adducts were found to increase with increasing glycerol concentration. A [M(MX)n(gly)]+ species that featured successive losses of HX was observed. It has not been established whether HX losses take place in solution, in the surface/vacuum interface and/or whether gas phase reactions might be responsible for the observation of the [M(MX)n(gly)–y HX]? species in the mass spectra of the MX/glycerol system.  相似文献   

13.
The results of experimental and theoretical studies of intermolecular MH...HX and BH...HX hydrogen bonds with the hydride hydrogen atom acting as a proton accepting site are analyzed. Spectral (IR and NMR) criteria for their formation are presented. The spectral, structural, and thermodynamic characteristics of these unusual hydrogen bonds obey the regularities found for classical hydrogen bonds. It was shown that the MH...HX bonds participate in the proton transfer with the formation of nonclassical cationic hydrides and the |M(η2-H2|+ hydrogen bonds are formed in low-polarity media. Problems arising in this new line of investigations are discussed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 846–851, May, 1998.  相似文献   

14.
《Electroanalysis》2003,15(2):126-132
Potentiometric carbon paste electrodes for copper(II) based on dithiosalicylic and thiosalicylic acids are described. The sensor based on dithiosalicylic acid (DTS) exhibits a linear response with a nearly Nernstian slope of 27.7 mV per decade, whereas the electrode based on thiosalicylic acid (TS) shows a super‐Nernstian slope. The limits of detection for the DTS sensor and the TS sensor are 10?7.9and 10?6.3 M for copper(II) activity, respectively. Selectivity coefficients are tabulated, and the influence of the pH on the response of these ISEs is studied. The DTS electrode is successfully used for potentiometric titration of humic acids with copper in order to get more information about complexing properties of these acids.  相似文献   

15.
A poly(vinyl chloride) (PVC) membrane sensor for holmium ions was fabricated based on N‐[(Z)‐1‐(2‐thienyl)‐ methylidene]‐N‐[4‐(4‐{[(Z)‐1‐(2‐thienyl)methylidene]amino} phenoxy)phenyl] amine (TPA) as a new ion carrier, acetophenon (AP) as plasticizing solvent mediator and sodium tetraphenyl borate (NaTPB) as an anion excluder. The electrode shows a good selectivity towards Ho3+ ions respect to other inorganic cations, including alkali, alkaline earth, transition and heavy metal ions. The constructed sensor displays a Nernstian behavior (19.5±0.3 mV/decade) over the concentration range of 1.0×10−6 to 1.0×10−2 mol·L−1 with the detection limit of the electrode being 4.6×10−7 mol·L−1 and very short response time (ca. 5 s). It has a useful working pH range of 3.2–9.8 for at least 8 weeks. The electrode was successfully applied as an indicator electrode for the potentiometric titration of a Ho3+ solution with EDTA and holmium determination in some alloys. The proposed sensor accuracy was studied by the determination of Ho3+ in mixtures of three different ions.  相似文献   

16.
《Electroanalysis》2003,15(9):787-796
The use of [Cu(bipy)2]Cl2?6H2O as a biomimetic catalyst in the construction of an amperometric sensor for dopamine determination is reported. The sensor was prepared modifying a glassy carbon electrode with a Nafion membrane doped with [Cu(bipy)2]Cl2?6H2O complex. The sensor presented a higher response in 0.25 mol L?1 phosphate buffer solution (pH 7.0), with an applied potential of ?50 mV (vs. SCE). In the optimized operational conditions, a linear response range between 35 and 240 μmol L?1, with a sensitivity of 2.02±0.07 nA l μmoL?1 cm?2 and detection limit of 8.0 μmol L?1 were typically observed for the sensor. The response time presented for this sensor was 0.5 s, presenting the same response for at least 40 successive measurements, with good repeatability (3.0%) expressed as relative standard deviation for n=6. The difference of the response between four sensor preparations was 4%. A detailed investigation about the sensor response for other sixteen phenolic compounds and interfering species were carried out. The sensor was applied in the determination of dopamine in pharmaceutical preparation with success.  相似文献   

17.
This study introduces modified carbon paste electrodes with carbon nitride nanosheets (CNNS) and outlines their application for the determination of hydroxychloroquine sulfate (HCQ) in tablets and synthetic urine samples. CNNS were synthesized by hydrothermal route (200 °C, 10 h) using melamine and citric acid as their precursors. The carbon nitride nanosheets-based electrode (CNNS/E) presented a linear dynamic range for HCQ (LDR), ranging from 10.0 nmol l−1 to 6.92 μmol l−1, and detection (LOD) and quantification limits (LOQ) of 0.16 nmol l−1 and 0.52 nmol l−1, respectively. LOD and LOQ were calculated by the equations: LOD=3(Sd/b), and LOQ=10(Sd/b). The modified sensor presented excellent relative standard deviations for parameters such as repeatability (2.39 % and 1.87 %) and reproducibility (3.22 % and 2.32 %) in HCQ oxidation peaks (1 and 2). The CNNS/E has not shown significant variations in its anodic signal intensity in the presence of some organic and inorganic substances. It is worth bearing in mind that CNNS/E can be easily manufactured and the sensor has the lowest HCQ detection limits reported so far. The proposed sensor was successfully applied for HCQ determination in tablets and synthetic urine, showing good recovery values and an error of 0.60 % about comparative method in tablet samples, assuring the quality of the method.  相似文献   

18.
A novel molecularly imprinted sensor was firstly prepared based on a carbon nanotubes/graphene composite modified carbon electrode (MIPs/CNT/GP/CE) for the selective determination of bovine serum albumin. The molecularly imprinted sensor was tested by differential pulse voltammetry (DPV) to investigate the relationship between the response current and bovine serum albumin concentration. The results showed that a wide linear range (1.0×10?4 to 1.0×10?10 g mL?1) for the detection of bovine serum albumin with a low detection limit of 6.2×10?11 g mL?1 for S/N=3 was obtained. The novel imprinted sensor exhibited high selectivity, sensitivity, and reproducibility, which provided an applicable way for sensor development.  相似文献   

19.
A modified glassy carbon electrode was prepared as an electrochemical voltammetric sensor based on molecularly imprinted polymer film for tartrazine (TT) detection. The sensitive film was prepared by copolymerization of tartrazine and acrylamide on the carbon nanotube-modified glassy carbon electrode. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. Under the optimum conditions, two dynamic linear ranges of 8?×?10?8 to 1?×?10?6?mol?L?1 and 1?×?10?6 to 1?×?10?5?mol?L?1 were obtained, with a detection limit of 2.74?×?10?8?mol?L?1(S/N?=?3). This sensor was used successfully for tartrazine determination in beverages.  相似文献   

20.
《Analytical letters》2012,45(6):1033-1045
The amoxicillin-imprinted polymer was synthesized with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross-linker. The binding characteristic of the imprinted polymer to amoxicillin was evaluated by equilibrium binding experiments. Using the imprinted polymer as recognition material, 3-(3′-nitrophenyl)-5(2′-sulfonylphenylazo)-rhodanine (4NRASP) was synthesized by the authors and was used as chemiluminescence (CL) reagent. A novel chemiluminescence (CL) sensor for the determination of amoxicillin was developed based on the CL reaction of amoxicillin with potassium permanganate in an acidic medium. The sensor displayed excellent selectivity and high sensitivity. The linear response range of the sensor was from 5.0 × 10?9 to 1.0 × 10?6 g · mL?1 (r = 0.9985) and the detection limit was 1.3 × 10?9 g · mL?1. The relative standard deviation for the determination of 1.0 × 10?7 g · mL?1 amoxicillin solution was 1.7% (n = 11). The sensor was applied to the determination of amoxicillin in urine samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号