首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnS/ZnAl2S4 nanocomposite and 2‐chlorobenzoyl ferrocene, were synthesized and used to construct a modified carbon paste electrode. The electrooxidation of methionine at the surface of the modified electrode was studied. Under the optimized conditions, the square wave voltammetric (SWV) peak current of methionine increased linearly with methionine concentration in the range of 5.0×10?8 to 8.0×10?4 M and detection limit of 10.0 nM was obtained for methionine. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of methionine and tryptophan which makes it suitable for the detection of methionine in the presence of tryptophan in real samples.  相似文献   

2.
A carbon paste electrode spiked with 1‐[4‐ferrocenyl ethynyl) phenyl]‐1‐ethanone (4FEPE) was constructed by incorporation of 4FEPE in graphite powder‐paraffin oil matrix. It has been shown by direct current cyclic voltammetry and double step chronoamperometry that this electrode can catalyze the oxidation of tryptophan (Trp) in aqueous buffered solution. It has been found that under optimum condition (pH 7.00), the oxidation of Trp at the surface of such an electrode occurs at a potential about 200 mV less positive than at an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and rate constant for the chemical reaction between Trp and redox sites in 4FEPE modified carbon paste electrode (4FEPEMCPE) were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of Trp showed a linear dependent on the Trp concentrations and linear calibration curves were obtained in the ranges of 6.00×10?6 M–3.35×10?3 M and 8.50×10?7 M–6.34×10?5 M of Trp concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.80×10?6 M and 5.60×10?7 M by CV and DPV methods. This method was also examined as a selective, simple and precise new method for voltammetric determination of tryptophan in real sample.  相似文献   

3.
A carbon paste electrode was modified with 2‐(4‐Oxo‐3‐phenyl‐3,4‐dihydroquinazolinyl)‐N′‐phenyl‐hydrazinecarbothioamide, magnetic core? shell Fe3O4@SiO2/MWCNT nanocomposite and ionic liquid (n‐hexyl‐3‐methylimidazolium hexafluoro phosphate). The electro‐oxidation of hydrazine at the surface of the modified electrode was studied using electrochemical approaches. This modified electrode offers a considerable improvement in voltammetric sensitivity toward hydrazine, compared to the bare electrode. Square wave voltammetry (SWV) exhibits a linear dynamic range from 7.0×10?8 to 5.0×10?4 M and a detection limit of 40.0 nM for hydrazine. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) for hydrazine oxidation were also determined. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of hydrazine and phenol that makes it suitable for the detection of hydrazine in the presence of phenol in real samples.  相似文献   

4.
A highly sensitive electrochemical biosensor for the detection of trace amounts of 8‐azaguanine has been designed. Double stranded (ds)DNA molecules are immobilized onto a glassy carbon electrode surface with Langmuir–Blodgett technique. The adsorptive voltammetric behaviors of 8‐azaguanine at DNA‐modified electrode were explored by means of cyclic voltammetry and square wave voltammetry. Compared with bare glassy carbon electrode (GCE), the Langmuir–Blodgett film modified electrode can greatly improve the measuring sensitivity of 8‐azaguanine. Under the optimum experimental conditions, the Langmuir–Blodgett film modified electrode in pH 3.0 Britton–Robinson buffer solutions shows a linear voltammetric response in the range of 5.0×10?8 to 1.0×10?5 mol L?1 with detection limit 9.0×10?9 mol L?1. The method proposed was applied successfully for the determination of 8‐azaguanine in diluted human urine with wonderful satisfactory.  相似文献   

5.
A 1‐[2‐hydroxynaphthylazo]‐6‐nitro‐2‐naphthol‐4‐sulfonate/ CuO nanoparticles modified carbon paste electrode (HNNSCCPE) was constructed and the electro‐oxidation of isoprenaline at the surface of the modified electrode was studied using cyclic voltammetry (CV), chronoamperometry (CHA), and square wave voltammetry (SWV). Under the optimized conditions, the square wave voltammetric peak current of isoprenaline increased linearly with isoprenaline concentrations in the range of 1.0×10?7 to 7.0×10?4 M and detection limit of 5.0×10?8 M was obtained for isoprenaline. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of isoprenaline, acetaminophen and N‐acetyl‐L‐cysteine which makes it suitable for the detection of isoprenaline in the presence of acetaminophen and N‐acetyl‐L‐cysteine in real samples.  相似文献   

6.
《Analytical letters》2012,45(6):1097-1107
Abstract

Captopril, 1-[(2S)-3-mercapto-2-methyl-1-oxopropyl]-L-Proline, can be deposited onto a silver electrode by a covalent bonding method to give a long-lived and stable chemically modified electrode(CME). Since the CME is prepared with a reaction between captopril and the substrate silver, the CME being prepared by this method is very stable. Furthermore, Hemoglobin(Hb) exhibits excellent voltammetric response at the modified electrode. Differential pulse voltammetric(DPV) measurements of the protein with this CME reveal the existence of a linear relationship between the anodic peak current and the concentration of Hb in the range of 2×10?6 ~ 5×10?5 mol/L. The detection limit is 8×10?7 mol/L and the relative standard deviation of results is 5% for 6 successive determinations at 2×10-5 mol/L. The determination of Hb for a real example is carried out.  相似文献   

7.
《Electroanalysis》2004,16(11):915-921
Voltammetric behavior of two mercaptopyrimidine derivatives (2‐thiouracil and 2‐thiobarbituric acid) has been studied by cyclic voltammetry at a cobalt phthalocyanine (CoPc)‐modified carbon‐paste electrode. The results of voltammetric determinations showed that the CoPc in the matrix of modified electrode acts as catalyst for electrooxidation of these thiols (RSH), lowering the overpotential of the reaction and significantly increasing the sensitivity for detection of thiols in neutral conditions. The results of voltammetric and polarization measurements in solutions with various pHs were used for prediction of the mechanism of electrocatalytic oxidation at the surface of modified electrode. These results showed that at the modified electrode, electrochemical oxidation of thiolate anion (RS?) is the rate‐determining step. It was found that the modified electrode exhibits good selectivity for catalytic oxidation of mercaptopyrimidines over other biologically important mercaptans such as cysteine, glutathione and thioglycolic acid. The results demonstrate that the peak current for thiol oxidation has a linear variation with the concentration in the range of 1×10?2–1×10?5 M. This system can be used for sensitive and selective voltammetric detection of mercaptopyrimidine derivatives.  相似文献   

8.
A novel voltammetric method using the Ppyox/NFR/Au (poly pyrrole – nuclear fast red – gold) modified electrode was developed for simultaneous measurement of various combinations of ascorbic acid (AA) and methyldopa (MDA). Polypyrrole film was prepared by incorporation of nuclear fast red (NFR) as doping anion, during the electropolymerization of pyrrole onto a gold (Au) electrode in aqueous solution using cyclic voltammetric (CV) method, and then it was overoxidized at constant potential. Differential pulse voltammetry was utilized for the measurement of both analytes using modified electrode. Well‐separated voltammetric peaks were observed for ascorbic acid (AA) and methyldopa at the Ppyox/NFR/Au modified electrodes with peak separation of 0.210 V. It has been found that under optimum condition (pH 3.0), the oxidation of AA and MDA at the surface of the electrode occurs at a potential about 260 and 50 mV less positive than unmodified Au electrode respectively. The current catalytic oxidation peaks showed a linear dependent on the concentration of AA and MDA in the range of 9.0×10?6 to 1.0×10?3 and 1.0×10?7 to 2.0×10?5 mol L?1 respectively. The detection limit of 5.8×10?6 and 5.0×10?8 mol L?1 (S/N=3) were obtained for AA and MDA respectively. The modified electrode was used for determination of AA and MDA in some real samples such as human serum and tablet.  相似文献   

9.
A composition of multiwalled carbon nanotube (MWCNT), Nafion and cobalt(II)‐5‐nitrosalophen (CoNSal) is applied for the modification of carbon‐paste electrode (CPE). The pretreated MWCNT is well dispersed in the alcoholic solution of Nafion under the ultrasonic agitation, and the resulted suspension is used as modifier (with 10% w/w) in the matrix of the paste electrode. The prepared electrode further modified by addition of 3 wt% of CoNSal. The resulted modified electrode is used as a sensitive voltammetric sensor for simultaneous determination of uric acid (UA) and ascorbic acid (AA). The electrode showed efficient electrocatalytic activity in lowering the anodic overpotentials and enhancement of the anodic currents. This electrode is able to completely resolve the voltammetric response of UA and AA. The effects of potential sweep rate and pH of the buffer solution on the response of the electrode, toward UA and AA, and the peak resolution is thoroughly investigated by cyclic and differential pulse voltammetry (CV and DPV). The best peak resolution for these compounds using the modified electrode is obtained in solutions with pH 4. The ΔEp for UA and AA in these methods is about 315 mV, which is considerably better than previous reports for these compounds. A linear dynamic range of 1×10?7 to 1×10?4 M with a detection limit of 6×10?8 M is resulted for UA in buffered solutions with pH 4.0. The voltammetric response characteristics for AA are obtained as, the linear range of 5×10?7 to 1×10?4 M with the detection limit of 1×10?7 M. The voltammetric detection system was very stable and the reproducibility of the electrode response, based on the six measurements during one month, was less than 3.5% for the slope of the calibration curves of UA and AA. The prepared modified electrode is successfully applied for the determination of AA and UA in mixture samples and reasonable accuracies are resulted.  相似文献   

10.
《Electroanalysis》2004,16(17):1413-1418
The in‐site functionalization of 4‐aminothiophenol (4‐ATP) self‐assembled monolayer on gold electrode at physiological pH yields a redox active monolayer of 4′‐mercapto‐N‐phenylquinone diimine (MNPD). The functionalized electrode exhibits excellent electrocatalytic responses towards dopamine (DA) and ascorbic acid (AA), reducing the overpotentials by about 0.22 V and 0.34 V, respectively, with greatly enhanced current responses. Due to its different catalytic activities toward DA and AA, the modified electrode resolves the overlapping voltammetric responses of DA and AA into two well‐defined voltammetric peaks by differential pulse voltammetry (DPV), which can be used for the simultaneous determination of these species in a mixture. The catalytic peak current obtained from DPV was linearly related to DA and AA concentration in the ranges of 5.0×10?6?1.25×10?4 M and 8.0×10?6?1.3×10?4 M with correlation coefficient of 0.999 and 0.998, respectively. The detective limits (3σ) for DA and AA were found to be 1.2×10?6 M and 2.4×10?6 M, respectively. The modified electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of DA and AA simultaneously in samples with satisfactory results.  相似文献   

11.
In this paper a graphene (GR) modified carbon ionic liquid electrode (CILE) was fabricated and used as the voltammetric sensor for the sensitive detection of catechol. Due to the specific physicochemical characteristics of GR such as high surface area, excellent conductivity and good electrochemical properties, the modified electrode exhibits rapid response and strong catalytic activity with high stability toward the electrochemical oxidation of catechol. A pair of well‐defined redox peaks appeared with the anodic and the cathodic peak potential located at 225 mV and 133 mV (vs.SCE) in pH 6.5 phosphate buffer solution, respectively. Electrochemical behaviors of catechol on the GR modified CILE were carefully investigated and the electrochemical parameters were calculated with the results of the electrode reaction standard rate constant (ks) as 1.24 s?1, the charge transfer coefficient (α) as 0.4 and the electron transfer number (n) as 2. Under the selected conditions the differential pulse voltammetric peak current increased linearly with the catechol concentrations in the range from 1.0 × 10‐7 to 7.0 × 10?4mol L‐1 with the detection limit as 3.0 × 10?8mol L‐1 (3σ). The proposed method was further applied to the synthetic waste water samples determination with satisfactory results  相似文献   

12.
Acid chrome blue K (ACBK) was electropolymerized on the surface of a glassy carbon electrode (GCE) by cyclic voltammetric sweep in the potential range from –0.2 to 0.9 V. The characteristic of poly‐ACBK film was studied by different methods such as electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. This modified electrode showed excellent electrocatalytic response to curcumin with the increase of the electrochemical responses. Under the optimal conditions a good linear voltammetric response could be obtained over the range of 1.0 × 10?7‐7.0 × 10?5 M and the detection limit was got as 4.1 × 10?8 M (S/N = 3). The method was successfully applied for the determination of curcumin in human urinev samples.  相似文献   

13.
DNA was attached on the surface of an ethylenedidamine/polyglutamic(En/PGA) modified glassy carbon electrode (GCE) to create a novel voltammetric sensor (DNA/En/PGA/GCE) for dopamine (DA). This modified electrode exhibited a linear voltammetric response for DA in the range from 1.0×10?7 mol L?1 to 1×10?5 mol L?1, with a detection limit of 2×10?8 mol L?1. The detection of DA was found to be unaffected by the presence of ascorbic acid, uric acid, serotonin and folic acid. The method proposed was applied to detect DA in pharmaceutical dosage and human blood serum with good satisfactory results.  相似文献   

14.
This communication describes the determination of an essential amino acid, L ‐methionine (L ‐Met) in the presence of important interferents, ascorbic acid (AA) and uric acid (UA) at physiological pH using a glassy carbon electrode modified with an electropolymerized film of 3‐amino‐5‐mercapto‐1,2,4‐triazole (p‐AMTa). The bare glassy carbon electrode fails to show a voltammetric signal for L ‐Met in the presence of AA and UA at pH 7.2. However, the p‐AMTa electrode separates the voltammetric signals of AA, UA and L ‐Met with pronounced oxidation currents. The amperometric current of L ‐Met was increased linearly from 1.0×10?7 to 1×10?4 M and the detection limit was found to be 4.12×10?10 M (S/N=3).  相似文献   

15.
A sensitive and selective electrochemical method for the determination of dopamine (DA) was developed using a calix[4]arene crown‐4 ether (CACE) film modified glassy carbon electrode (GCE).The modified electrode exhibited good electrocatalytic activity for electrochemical oxidation of DA in the pH 6.00 Britton–Robinson buffer solution, and ascorbic acid (AA) did not interfere with it. The diffusion coefficient (D=2.7×10?5 cm2 s?1), and the kinetic parameter such as the electron transfer coefficient (α=0.54) of DA at the surface of CACE were determined using electrochemical approaches. The catalytic oxidation peak currents showed a linear dependence on the DA concentration and a linear analytical curve was obtained in the range of 2.0×10?5–1.0×10?3 M of DA with a correlation coefficient of 0.9990. The detection limit (S/N=3) was estimated to be 3.4×10?6 M. This method was also examined for the determination of DA in an injection sample. In addition, effects of possible interferences were investigated. The present work shows the potential of the proposed method for the fabrication of a modified electrode, as it can be effectively used for voltammetric detection of DA.  相似文献   

16.
A voltammetric method using a poly(1‐methylpyrrole) modified glassy carbon electrode was developed for the quantification of adrenaline. The modified electrode exhibited stable and sensitive current responses towards adrenaline. Compared with a bare GCE, the modified electrode exhibits a remarkable shift of the oxidation potentials of adrenaline in the cathodic direction and a drastic enhancement of the anodic current response. The separation between anodic and cathodic peak potentials (ΔEp) for adrenaline is 30 mV in 0.1 M phosphate buffer solution (PBS) at pH 4.0 at modified glassy carbon electrodes. The linear current response was obtained in the range of 7.5 × 10?7 to 2.0 × 10?4 M with a detection limit of 1.68 × 10?7 M for adrenaline by square wave voltammetry. The poly(1‐methypyrrole)/GCE was also effective to simultaneously determine adrenaline, ascorbic acid and uric acid in a mixture and resolved the overlapping anodic peaks of these three species into three well‐defined voltammetric peaks in cyclic voltammetry. The modified electrode has been successfully applied for the determination of adrenaline in pharmaceuticals. The proposed method showed excellent stability and reproducibility.  相似文献   

17.
A glassy carbon electrode (GCE) modified with Mg‐Al‐SDS hydrotalcite‐like clay (SDS‐HTLC) was used for the sensitive voltammetric determination of 2‐nitrophenol (2‐NP) utilizing the oxidation process. The results indicate the prepared modified electrode has an excellent electrocatalytic activity toward 2‐NP oxidation, lowering the oxidation overpotential and increasing the oxidation current. Under optimal conditions, the oxidation current was proportional to 2‐NP concentration in the range from 1.0×10?6 to 6.0×10?4 M with the detection limit of 5.0×10?7 M by DPV (S/N=3). The fabricated electrode was applied for 2‐NP determination in water samples and the recovery for these samples was from 95.6 to 103.5%.  相似文献   

18.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

19.
In the present work, an electrochemical sensor was developed for simple and sensitive determination of tryptophan (Trp) using multi‐walled carbon nanotubes modified sol‐gel electrode (MWCNTs/SGE). The electrocatalytic oxidation of tryptophan was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the oxidation peak current of Trp at the MWCNTs/SGE was greatly improved compared with that of the bare SGE. Furthermore, at the MWCNTs/SGE, the anodic peak potential of Trp is shifted about 220 mV to more negative value indicated that modified electrode has better electrocatalytic activity for electro‐oxidation of Trp. The anodic peak currents increased linearly with the concentration of tryptophan in the range of 0.2 × 10?6 to 15 × 10?6 M with a detection limit of 0.139 × 10?6 M (at an S/N = 3).  相似文献   

20.
An organically modified sol‐gel electrode using 3‐aminopropyltrimethoxy silane for covalent immobilization of a redox mediator namely toluidine blue has been reported. Cyclic voltammetric characterization of the modified electrode in the potential range of 0.2 V to ?0.6 V exhibited stable voltammetric behavior in aqueous supporting electrolyte with a formal potential of ?0.265 V vs. SCE, corresponding to immobilized toluidine blue. The electrocatalytic activity of the modified electrode when tested towards nitrite ion exhibited a favorable response with the electrocatalytic reduction of nitrite occurring at a reduced potential of ?0.34 V. A good linear working range from 2.94×10?6 M to 2.11×10?3 M with a detection limit of 1.76×10?6 M and quantification limit of 5.87×10?6 M was obtained for nitrite determination. The stable and quick response (4 s) of the modified electrode towards nitrite under hydrodynamic conditions shows the feasibility of using the present sensor in flow systems. Significant improvements in the operational stability by overcoming the leachability problem and repeatability with a relative standard deviation of 1.8% of the TB thin film sensor have been obtained by the strategy of immobilization of the mediator in the sol‐gel matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号