首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, glassy carbon electrode modified with nano gold‐crystal violet film has been used to detect arsenite (As (III)) in a model system and in groundwater samples. The modified electrode was characterized by scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS). Using voltammetric measuring technique, linear response was obtained in a concentration range of 2.0–22.0 μM. The arsenite concentrations in groundwater samples varied between 2.4 μM to 4.8 μM. The sensitivity of the modified electrode for As (III) detection was 5.6 μA/μM cm2 and 0.8 μM concentration was found as lower limit of detection (LOD). The accuracy of the method was checked with standard method anodic stripping voltammetry (ASV). Groundwater samples were characterized with dynamic (DLS) and electrophoretic (ELS) light scattering measurements which have shown that particles present in different samples differ in size distribution and zeta potential which did not interfere with As (III) detection.  相似文献   

2.
Dong S  Che G 《Talanta》1991,38(1):111-114
The potential-response of a microdisk electrode made with a chloride-doped polypyrrole (PPY) film on a carbon fibre (CF) has been examined. The effect of the polymerization conditions on the response characteristics is discussed. The optimum conditions for preparing the electrode are: cycling potential from +0.8 to +1.0 V in 0.1-0.2M pyrrole (Py) containing 0.1M LiCl, electropolymerization time 15-20 min. The electrode gives a Nernstian response of 56-58 mV/pCl and a detection limit of 3.6 x 10(-5)M chloride. It has the advantages of low resistance, short conditioning time and fast response. It has been used satisfactorily for detection of chloride in serum.  相似文献   

3.
Boron-doped carbon nanotubes (BCNTs) as a novel carbon nanomaterial have higher catalytic activity. Electroanalysis of dihydronicotinamide adenine dinucleotide (NADH) based on the BCNTs modified electrode has been investigated. Comparing with the bare glassy carbon (GC) and carbon nanotubes (CNTs)/GC electrodes, the BCNTs/GC electrode allowed highly sensitive amperometric detection of NADH at the lower applied potential, and minimization of surface contamination. Therefore, BCNTs are useful and promising material for the detection of NADH and are attractive for dehydrogenase-based amperometric biosensor or other analytical applications.  相似文献   

4.
通过酰胺化反应制备了四-2,9,16,23-氨基酞菁钴(TAPcCo)与多壁碳纳米管(MWCNTs)的复合材料,红外光谱、扫描电镜和紫外可见吸收光谱分析表明复合材料中酞菁分子与碳管之间是通过酰胺键结合的,紫外吸收光谱还表明两者之间存在着强烈的电子相互作用。同时还研究了复合材料修饰的玻碳电极对香兰素(VNL)的电催化作用。循环伏安法表明,修饰电极对VNL有着良好的电催化活性,相对于裸玻碳电极VNL在修饰电极上峰电位负移了20mV,峰电流增大了12倍,且VNL在电极表面的反应受吸附控制。方波伏安法证实了这一反应过程中有质子参与。同时,方波伏安法研究还发现:峰电流与香兰素浓度在4.2μmol·L-1~5mmol·L-1范围内呈良好的线性关系,检出限(3.3S/N)为0.44μmol·L-1。  相似文献   

5.
The clay mineral montmorillonite has been tested as modifier for the carbon paste electrode with a novel electrode modification technique. The differential pulse voltammetric determination of copper(II) by means of this modified carbon paste electrode has been studied. A detection limit of 4x10(-8) mol/l has been achieved after 10 min preconcentration under open circuit conditions with subsequent anodic stripping voltammetry. The calibration curve for Cu(II) is linear in the range of 4x10(-8)-8x10(-7) mol/l. Pb interferes in a 10-fold molar and Cd and Hg in a 100-fold molar excess. The interference by humic ligands is significant.  相似文献   

6.
CuO nanospheres, synthesized by a simple one‐step hydrothermal method, have been applied to modify the glassy carbon (GC) electrode for sensitive nonenzymatic glucose detection. The CuO nanospheres modified electrode, compared to the Nafion modified GC electrode, exhibits an enhanced electrocatalytic property for direct glucose oxidation and shows a fast response and a high sensitivity for the amperometric detection of glucose. It has been determined that the dissolved oxygen is not involved in glucose oxidation and the high concentration of NaCl does not poison the electrode. These results also indicate that CuO nanospheres have great potential application in electrochemical detection.  相似文献   

7.
Amperometric detector designs for capillary electrophoresis microchips   总被引:1,自引:0,他引:1  
Electrochemical (EC) detection is a sensitive and miniaturisable detection mode for capillary electrophoresis (CE) microchips. Detection cell design is very important in order to ensure electrical isolation from the high separation voltage. Amperometric detectors with different designs have been developed for coupling EC detection to CE-microchips. Different working electrode alignment: in-channel or end-channel has been tested in conjunction with several materials: gold, platinum or carbon. The end-channel detector was based on a platinum or gold wire manually aligned at the exit of the separation channel. Thick- (screen-printed carbon electrode) and thin-film (sputtered gold film) electrodes have also been employed with this configuration, but with a different design that allowed the rapid replacement of the electrode. The in-channel detector was based on a gold film within the separation channel. A gold-based dual electrode detector, which combined for the first time in- and end-channel detection, has been also tested. These amperometric detectors have been evaluated in combination to poly(methylmethacrylate) (PMMA) and Topas (thermoplastic olefin polymer of amorphous structure) CE-microchips. Topas is a new and promising cyclic olefin copolymer with high chemical resistance. Relevant parameters of the polymer microchip separation such as precision, efficiency or resolution and amperometric detection were studied with the different detector designs using p-aminophenol and L-ascorbic acid as model analytes in Tris-based buffer pH 9.0.  相似文献   

8.
《Electroanalysis》2005,17(14):1325-1330
Interference by Cu(II) causes serious problems in the detection of As(III) using anodic stripping voltammetry at gold electrodes. The behavior of Cu(II) and As(III) were examined at both a gold macro electrode and two kinds of gold nanoparticle modified electrodes, one where gold particles are deposited on glassy carbon (GC) and the other where basal plane pyrolytic graphite (BPPG) is the substrate. The sensitivity of As(III) detection was higher on gold nanoparticle modified electrodes than those on a macro gold electrode by up to an order of magnitude. In addition, the stripping peak of As(III) was narrower and more symmetric on a gold nanoparticle‐modified GC electrode, leading to analytical data with a lower limit of detection. At a macro gold electrode, the peak currents of Cu(II) were higher than those on gold nanoparticle modified electrodes. Accordingly, through the use of gold nanoparticle modified electrodes, the effect of copper interference to the arsenic detection can be reduced.  相似文献   

9.
A method for the simultaneous detection of five polyphenols (caffeic, chlorogenic, ferulic and gallic acids and (+)-catechin) by CZE with electrochemical detection was developed. Separation of these polyphenols was performed in a 100 mM borate buffer (pH 9.2) within 15 min. Under optimized separation conditions, the performance of glassy carbon (GC) electrodes modified with multiwalled carbon nanotube layer obtained from different dispersions was examined. GC electrode modified with a dispersion of multi-walled carbon nanotubes (CNT) in polyethylenimine has proven to be the most suitable CNT-based electrode for its application as amperometric detector for the CZE separation of the studied compounds. The excellent electrochemical properties of this electrode allowed the detection of the selected polyphenols at +200 mV and improved the efficiency and the resolution of their CZE separation. Limits of detection below 3.1 μM were obtained with linear ranges covering the 10?? to 10?? M range. The proposed method has been successfully applied for the detection (ferulic, caffeic and gallic acids and (+)-catechin) and the quantification (gallic acid and (+)-catechin) of polyphenols in two different white wines without any preconcentration step. A remarkable signal stability was observed on the electrode performance despite the presence of potential fouling substances in wine.  相似文献   

10.
研究了在PBS缓冲介质中,一种检测癌胚抗原的新型免标记阻抗型免疫传感器的制备及应用,基于石墨烯、纳米金在玻碳电极表面组装制备传感器,通过循环伏安法、交流阻抗法对制备的传感器进行表征。在优化的实验条件下,该免疫传感器的阻抗值随着检测溶液中癌胚抗原(CEA)浓度的增大而增大,并在0.1~85 ng/mL CEA范围内呈线性关系,回归方程为△Ret=1605.55+39.26ρ;检测限为0.04 ng/mL(R=0.9992)。该免疫传感器可用于临床上对CEA的检测。  相似文献   

11.
Dai X  Compton RG 《The Analyst》2006,131(4):516-521
The electrochemical detection of As(III) was investigated on a platinum nanoparticle modified glassy carbon electrode in 1 M aqueous HClO4. Platinum nanoparticle modified glassy carbon electrodes were prepared by potential cycling in 0.1 M aqueous KCl containing 1 mM K2PtCl6. In each potential cycle, the potential was held at + 0.5 V for 0.01 s and at -0.7 V for 10 s. 25 cycles were optimally used to prepare the electrodes. The resulting electrode surfaces were characterized with AFM. The response to arsenic(III) on the modified electrode was examined using cyclic voltammetry and linear sweep voltammetry. By using the As(III) oxidation peak for the analytical determination, there is no interference from Cu(II) if present in contrast to the other metal surfaces (especially gold) typically used for the detection of arsenic; Cu(II) precludes the use of the As(0) to As(III) peak for quantitative anodic stripping voltammetry measurements due to the formation of Cu3As2 and an overlapping interference peak from the stripping of Cu(0). After optimization, a LOD of 2.1 +/- 0.05 ppb was obtained using the direct oxidation of As(III) to As(V), while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb, suggesting the method may have practical utility.  相似文献   

12.
An enzymeless sensor based on a multi-walled carbon nanotubes-dicetyl phosphate (MWCNT-DCP) film modified vitreous carbon electrode was developed for the determination of hypoxanthine. The MWCNT-DCP film modified electrode showed a remarkable enhancement effect on the oxidation peak current of hypoxanthine. Under the optimized conditions, the oxidation peak current is proportional to the concentration of hypoxanthine over the range from 5.0 x 10(-7) to 2.0 x 10(-4) mol L(-1) with a detection limit (S/N = 3) of 2.0 x 10(-7) mol L(-1). The MWCNT-DCP film modified electrode has been successfully used to detect hypoxanthine in fish samples.  相似文献   

13.
A multi-walled carbon nanotubes (MWCNTs) film-coated glassy carbon electrode (GCE) was used for the voltammetric determination of carbamazepine (CBZ). The results showed that this simple modified electrode exhibited excellent electrocatalytic activity towards the oxidation of CBZ. The voltammetric response of CBZ at this film-modified electrode increased significantly when compared with that at a bare glassy carbon electrode and the sensor response was reproducible. The proposed method was applied to the quantification of CBZ in wastewater samples, collected in a municipal wastewater treatment plant, and in pharmaceutical formulations. The developed methodology yields results in accord with those obtained by chromatographic techniques commonly used in the quantification of pharmaceutical compounds in real samples. Good recoveries have been obtained and the limits of detection and quantification (40 and 140 nM, respectively) are among the lowest that have been reported to date for this pharmaceutical compound using voltammetric techniques.  相似文献   

14.
《Electroanalysis》2017,29(3):907-916
A porous electrode material combining the features of vertically aligned multi‐walled carbon nanotubes (VAMWCNT) and diamond‐like carbon films (DLC) have been developed for a highly sensitive electrochemical sensor. For working electrode preparation, DLC has been grown onto VAMWCNT, forming a porous, conductive and stable composite. The electrochemical performance of this DLC:VAMWCNT electrode has been investigated toward detection and analysis of three well‐known molecules, namely paracetamol, codeine and caffeine. A ternary mixture of these analytes was simultaneously determined under optimum experimental conditions using square‐wave voltammetry. Wide linear concentration ranges and the limits of detection of 3.34×10−7 mol L−1, 1.57×10−7 mol L−1 and 3.67×10−7 mol L−1 were obtained for paracetamol, codeine and caffeine, respectively. We conclude that the proposed voltammetric method and the DLC:VAMWCNT electrode comprise a reliable methodology for simultaneous determination of paracetamol, codeine and caffeine in biological matrix samples.  相似文献   

15.
Poly-Toluidine Blue film was prepared by electrooxidative polymerization at a glassy carbon electrode in a phosphate buffer solution. The resulting chemically modified electrode (CME) exhibited excellent electrocatalysis toward the oxidation of reduced nicotinamide coenzyme (NADH) with over a 450 mV decrease of the overpotential compared with that at a bare glassy carbon electrode. Two electrochemical determinations of NADH, cyclic voltammetry and flow injection analysis, were established based on the electrocatalytical performance of the resulting modified electrode. Under an identical determinate condition, the voltammetric detection for NADH gave a detection limit of 3.3 micromol L(-1) with a linear concentration range of 9.1 micromol L(-1) to 1.8 mmol L(-1). As a detector in a flow-injection system, the CME gave a detection limit of 0.1 micromol L(-1) for NADH with a linear concentration range of 1.0 micromol L(-1) to 3.2 mmol L(-1). Obviously, flow-injection analysis is superior to voltammetric detection in NADH determination for its lower detection limit and wider detectable linear range.  相似文献   

16.
Antimony is an element of significant environmental concern, yet has been neglected relative to other heavy metals in electroanalysis. As such very little research has been reported on the electroanalytical determination of antimony at unmodified carbon electrodes. In this paper we report the electrochemical determination of Sb(III) in HCl solutions using unmodified carbon substrates, with focus on non-classical carbon materials namely edge plane pyrolytic graphite (EPPG), boron doped diamond (BDD) and screen-printed electrodes (SPE). Using differential pulse anodic stripping voltammetry, EPPG was found to give a considerably greater response towards antimony than other unmodified carbon electrodes, allowing highly linear ranges in nanomolar concentrations and a detection limit of 3.9?nM in 0.25?M HCl. Furthermore, the sensitivity of the response from EPPG was 100 times greater than for glassy carbon (GC). Unmodified GC gave a comparable response to previous results using the bare substrate, and BDD gave an improved, yet still very high limit of detection of 320?nM compared to previous analysis using an iridium oxide modified BDD electrode. SPEs gave a very poor response to antimony, even at high concentrations, observing no linearity from standard additions, as well as a major interference from the ink intrinsic to the working electrode carbon material. Owing to its superior performance relative to other carbon electrodes, the EPPG electrode was subjected to further analytical testing with antimony. The response of the electrode for a 40?nM concentration of Sb(III) was reproducible with a mean peak current of 1.07?µA and variation of 8.4% (n?=?8). The effect of metals copper, bismuth and arsenic were investigated at the electrode, as they are common interferences for stripping analysis of antimony.  相似文献   

17.
Rezaei B  Damiri S 《Talanta》2010,83(1):197-204
Highly uniform dendritic silver nanostructures as a new electrode material, have been synthesized by electrodeposition on the glassy carbon (GC) electrode with assistance of polyethylene glycol 400 (PEG-400) as a soft template, to achieve a superior electrocatalyst with enhanced detection sensitivity in electroanalysis compared to conventional bulk Ag electrodes. The effects of the growth conditions such as concentrations of the reagents and applied potentials on the morphology and structure of as-prepared tree-like nanostructures have also been investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). In the silver nanodendrites (AgNDs), the diameter of the trunk is around 100-200 nm with length up to 10-40 μm, and the length of its branches can reach 10 μm. In addition, the electrocatalytic behavior of this modified electrode was exploited as a sensitive detection system for the reduction of RDX high explosive, hydrogen peroxide and hexacyanoferrate (HCF) by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Also, the obtained results were compared to multiwalled carbon nanotubes (MWCNTs) and bulk silver electrodes. These studies show that the nanodendritic silvers significantly increase the electron-transfer rate of the electrochemical reactions by as much as 1-2 orders of magnitude.  相似文献   

18.
A simple and rapid electrochemical method is developed for the determination of trace-level norfloxacin, based on the excellent properties of multi-walled carbon nanotubes (MWCNTs). The MWCNTs/Nafion film-coated glassy carbon electrode (GCE) is constructed and the electrochemical behavior of norfloxacin at the electrode is investigated in detail. The results indicate that MWCNTs modified glassy carbon electrode exhibited efficiently electrocatalytic oxidation for norfloxacin (NFX) with relatively high sensitivity, stability and life time. Under conditions of cyclic voltammetry, the current for oxidation of selected analyte is enhanced significantly in comparison to the bare GCE. The electrocatalytic behavior is further exploited as a sensitive detection scheme for the analyte determinations by linear sweep voltammetry (LSV). Under optimized condition in voltammetric method the concentration calibration range and detection limit (S/N=3) are 0.1-100 micromol/L and 5 x 10(-8)mol/L for NFX. The proposed method was successfully applied to NFX determination in tablets. The analytical performance of this sensor has been evaluated for detection of the analyte in urine as a real sample.  相似文献   

19.
Nanostructured polyaniline (PANI) conducting polymer films were prepared on electrochemically pretreated glassy carbon electrodes, which were previously modified with multilayers of polystyrene (PS) nanoparticles with a diameter of 100 nm. PANI was electropolymerised and grown through the interstitial spaces between the PS nanoparticles, which formed a nanocomposite film of PANI and PS nanoparticles on the electrode surface. Furthermore, a nanoporous PANI film was fabricated through the removal of the PS nanoparticles by dissolution in toluene. As a result of their nanostructure, both of the PANI films (before and after removal of the PS nanoparticles) exhibited enhanced electrocatalytic behaviour towards the reduction of nitrite relative to bulk-PANI films; however, partial collapse or shrinkage may have occurred with the removal of the nanoparticles and could have resulted in a less enhanced response. Under optimised conditions, the nanocomposite-film-modified electrode exhibited a fast response time of 5 s and a linear range from 5.0 x 10(-7) to 1.4 x 10(-3) M for the detection of nitrite; the detection limit was 2.4 x 10(-7) M at a signal-to-noise ratio of 3.  相似文献   

20.
Pei J  Yin Q  Zhong J 《Talanta》1991,38(10):1185-1189
A carbon paste electrode used as a sensor for silver has been developed and electrode response characteristics have been investigated. The electrode exhibits linear response to the logarithm of the concentration of silver from 5 x 10(-7)M to 1 x 10(-2)M, with a response slope of 63 +/- 2 mV. The detection limit according to IUPAC recommendations is 1 x 10(-7)M. This electrode has been used to determine trace silver in fixing solutions and waste electroplate solutions with good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号