首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel electrochemical sensor based on nanocellulose‐carbon nanoparticles (NC‐CNPs) nanocomposite film modified glassy carbon electrode (GCE) is developed for the analysis of metoclopramide (MCP). Atomic force microscopy, scanning electron microscopy and electrochemical impedance spectroscopy were used to characterize the roughness, surface morphology and performance of the deposited modifier film on GCE. SEM image demonstrated that modifier nanoparticles are uniformly deposited on GCE, with an average size of less than 50 nm. The electrochemical behavior of MCP and its oxidation product is studied using linear sweep and cyclic voltammetry over a wide pH range on NC‐CNPs modified glassy carbon electrode. The results revealed that the oxidation of MCP is an irreversible and pH‐dependent process that proceeds in an adsorption‐controlled mechanism and results in the formation of a main oxidation product, which adsorbs on the surface of NC‐CNPs/ GCE. The modified electrode showed a distinctive anodic response towards MCP with a considerable enhancement (49 fold) compared to the bare GCE. Under the optimized conditions, the modified electrode exhibited a wide linear dynamic range of 0.06–2.00 µM with a detection limit of 6 nM for the voltammetric determination of MCP. The prepared modified electrode showed several advantages such as simple preparation method, high stability, reproducibility, and repetitive usability. The modified electrode is successfully applied for the accurate determination of trace amounts of MCP in pharmaceutical and clinical preparations.  相似文献   

2.
A novel voltammetric biosensor based on nano‐TiO2/nafion/carbon nanoparticles modified glassy carbon electrode (TiO2/N/CNP/GCE) was developed for the determination of dobutamine (DBA). Characterization of the surface morphology and property of TiO2/N/CNP layer was carried out by the scanning electron microscopy and atomic force microscopy. The electrochemical performance of the modified electrode was investigated by means of the cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy techniques. Effective experimental variables, such as the scan rate, pH of the supporting electrolyte, drop size of the casted modifier suspension and accumulation conditions of DBA on the surface of TiO2/N/CNP/GCE were optimized. Under the optimized conditions, a significant electrochemical improvement was observed toward the electro‐oxidation of DBA on the surface of TiO2/N/CNP/GCE compared to the bare GCE. Under the optimized conditions, a wide linear dynamic range (6 nM–1 µM) with a low detection limit of 2 nM for DBA was resulted. The prepared modified electrode shows high sensitivity, stability and good reproducibility in the determination of DBA concentrations. Satisfactory results were obtained for DBA analysis in the pharmaceutical and clinical preparations using TiO2/N/CNP/GCE.  相似文献   

3.
A simple, sensitive and reliable electrochemical sensor has been developed based on CuO nanostructures modified glassy carbon electrode for simultaneous determination of hydroquinone (HQ) and ascorbic acid (AA). The CuO nano material was synthesized by aqueous chemical growth method using different sources of OH. The characterization of nano material was performed by Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy and energy dispersive X‐ray spectroscopy. The glassy carbon electrode was modified by CuO nano material using drop cast method and studied by cyclic voltammetry. The CuO/GCE exhibited excellent electrocatalytic activity towards the oxidations of HQ and AA in borate buffer solution (pH 8.0) and the corresponding electrochemical signals have appeared as two well resolved oxidation peaks with significant peak potential differences of (0.21V vs. Ag/AgCl). Differential pulse voltammetry was used for simultaneous determination of HQ and AA using the CuO/GCE. At the optimum conditions, for simultaneous determination by synchronous change of the analyte concentrations, the linear response ranges were between 0.0003–0.355 mM for HQ and 0.0001–0.30 mM for AA respectively. Furthermore, CuO/GCE was successfully applied for the independent determination of AA in fruit juices as well as for the simultaneous determination of HQ and AA in cosmetic samples.  相似文献   

4.
The electrochemical synthesis of silver nanoparticles (nano‐Ag) has been successfully carried out on glassy carbon electrode (GCE) and indium tin oxide electrode (ITO) using 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMT) as green electrolytes. Further the electrodeposited nano‐Ag modified ITO electrode has been examined using atomic force microscopy (AFM), and X‐ray diffraction studies (XRD). The electrodeposited Ag nanoparticles on ITO were found in the size range of 5 to 35 nm. The nano‐Ag film modified GCE was further coated with nafion (Nf) and BMT (1 : 1 ratio) mixture and found to be stable in BMT and in pH 7 phosphate buffer solution (PBS). The nano‐Ag/BMT‐Nf film modified GCE successfully applied for the oxygen reduction reaction in neutral pH (pH 7.0 PBS). The proposed film modified GCE successfully reduces the over potential and show well defined reduction peaks for the detection of dissolved oxygen using cyclic voltammetry (CV) and rotating disc voltammetry (RDE). The film also applied for the detection of dissolved oxygen using electrochemical impedance spectroscopic studies (EIS).  相似文献   

5.
In this paper, a high‐sensitivity electrochemical sensor based on platinum (Pt) doped nickel oxide (NiO) nanoparticles and multi‐walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (Pt?NiO/MWCNTs/GCE) has been developed to determine piroxicam (PIR) and amlodipine (AML) simultaneously. The electrochemical behavior of PIR and AML at the proposed sensor has been investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CA) methods. Pt doped NiO nanoparticles were synthesized by the sol‐gel procedure and were investigated using X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDX) and field emission scanning electron microscopy (FESEM) techniques. DPV responses of PIR and AML increased linearly with their concentration in wide linear dynamic ranges of 0.6–320.0 μM and 1.0–250.0 μM, respectively. The limits of detection were 0.061 μM for PIR and 0.092 μM for AML. The excellent analytical figure of merits of the proposed modified electrode leads to application of it promising electrochemical sensor to determine PIR and AML in human serum and urine with satisfactory results.  相似文献   

6.
A novel Prussian blue/copper‐gold bimetallic nanoparticles hybrid film modified electrode was prepared by electrochemical deposition on a glassy carbon electrode (PB/Cu‐AuNPs/GCE). Morphology and electrochemistry of this electrode were studied by UV‐vis spectroscopy, scanning electron microscopy, X‐ray diffraction, cyclic voltammetry and electrochemical impedance spectroscopy. The sensor showed significantly better electrocatalytic activity for the reduction of hydrogen peroxide in comparison with the single PB/GCE and PB/AuNPs/GCE. This was attributed to the synergistic effect of PB and Cu‐Au bimetallic nanoparticles. Also, the sensor demonstrated an overall high level of performance for the analysis of H2O2 in the concentration range from 0.002 to 0.84 mM.  相似文献   

7.
Shahrokhian S  Rastgar S 《The Analyst》2012,137(11):2706-2715
Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.  相似文献   

8.
Present study describes the synthesis of mixed oxide films of manganese and vanadium by electrochemical pulsed deposition technique on a glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNT). The film was further decorated with gold nanoparticles to enhance the reduction signal of dissolved oxygen in pH 5.17 acetate buffer solution. All of the electrochemical synthesized modified electrodes have been characterized with Scanning electron microscopy(SEM), High‐resolution transmission electron microscopy (HRTEM), X‐Ray photoelectron spectroscopy (XPS), X‐Ray diffraction (XRD) techniques. The electrode obtained (AuNPs/MnOx?VOx/CNT/GCE) was utilized as a platform for glucose biosensor where the glucose oxidase enzyme was immobilized on the composite film with the aid of chitosan and an ionic liquid. The electrochemical performance of the biosensor was investigated by cyclic voltammetry and the relative parameters have been optimized by amperometric measurements in pH 5.17 acetate buffer solution. The developed biosensor exhibited a linear range for glucose between 0.1–1.0 mM and the limit of detection was calculated as 0.02 mM.  相似文献   

9.
An electrochemical sensor based on poly-ethionine (Poly-ET) film modified glassy carbon electrode was developed for sensitive and simultaneous sensing of dopamine (DA) and paracetamol (PA). The electropolymerization of ethionine monomer was carried out to modify the electrode. The modified electrode was characterized by using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The Poly-ET/GCE exhibited excellent electrocatalysis towards the sensing of DA and PA. Poly-ET/GCE showed a linear increase of current response with increase concentration of DA and PA ranging from 0.1 μM–60 μM and 0.1 μM–180 μM, respectively. The LODs were found to be 7 nM and 18 nM (S/N=3) for DA and PA, respectively. This electrochemical sensor was successfully utilized for the detection of DA and PA in pharmaceutical samples.  相似文献   

10.
A novel nanoparticle film modified electrode has been constructed using a glassy carbon electrode (GCE) coated with a carbon nanotube-dihexadecylphosphate (DHP) film. This modified electrode exhibits an enhanced effectiveness for the oxidation of azithromycin. A method is also described for the evaluation of azithromycin-bovine serum albumin (BSA) interaction. The electrochemical behavior of azithromycin as well as its interaction with BSA at this nanoparticle film electrode has been investigated by cyclic voltammetry, linear sweep voltammetry, differential pulse voltammetry and chronocoulometry. The binding number and association constant between azithromycin and bovine serum albumin have been obtained.  相似文献   

11.
A new electrochemical sensor based on Poly(Isoleucine) modified glassy carbon electrode decorated with platinum nanoparticles (Pt/Poly(Isoleucine)/GCE) was developed for sensitive individual and simultaneous determination of hydroquinone (HQ) and catechol (CC). Scanning electron microscopy (SEM), Electrochemical impedance spectroscopy (EIS), Cyclic voltammetry (CV) and Differential pulse voltammetry (DPV) were performed in order to characterize the Pt/Poly(Isoleucine)/GCE nanocomposite. For simultaneous determination of HQ and CC, Pt/Poly(Isoleucine)/GCE showed wide linear range between the 0.01–100.0 μM. The detection limits were 0.006 μM for HQ and 0.005 μM for CC. The Pt/Poly(Isoleucine)/GC electrode exhibited good sensitivity and reliability in the simultaneous electroanalysis of two isomers in PBS of pH 7.5. The modified electrode was used to detect the isomers in naturel samples.  相似文献   

12.
《Electroanalysis》2017,29(10):2401-2409
Copper nanoparticles (nano‐Cu) were electrodeposited on the surface of glassy carbon electrode (GCE) potentiostatically at −0.6 V vs. Ag/AgCl for 60 s. The developed nano‐copper modified glassy carbon electrode (nano‐Cu/GCE) was optimized and utilized for electrochemical assay of chemical oxygen demand (COD) using glycine as a standard. The surface morphology and chemical composition of nano‐Cu/GCE were investigated using scanning electron microscope (SEM) and energy dispersive X‐ray spectrometer (EDX), respectively. The electrochemical behavior was investigated using linear sweep voltammetry (LSV) which is characterized by a remarkable anodic peak at ∼0.6 V, compared to bare GCE. This indicates that nano‐Cu enhances significantly the electrochemical oxidation of glycine. The effect of different deposition parameters, such as Cu2+ concentration, deposition potential, deposition time, pH, and scan rate on the response of the developed sensor were investigated. The optimized nano‐Cu/GCE based COD sensor exhibited a linear range of 15 to 629.3 ppm, and a lower limit of detection (LOD) of 1.7 ppm (S/N=3). This developed method exhibited high tolerance level to chloride ion (0.35 M chloride ion has minimal influence). The analytical utility of the prepared COD sensor was demonstrated by investigating the COD recovery (99.8±4.3) and the assay of COD in different water samples. The results obtained were verified using the standard dichromate method.  相似文献   

13.
An electrochemical sensor for simultaneous determination of dopamine (DA), uric acid (UA), guanine (G), and adenine (A) has been constructed by copolymerizing melamine monomer and Ag ions on a glassy carbon electrode (GCE) with cyclic voltammetry. The poly-melamine and nano Ag formed a hybridized film on the surface of the GCE. The morphology of the film was characterized by scanning electron microscope. The electrochemical and electrocatalytic properties of this film were characterized by cyclic voltammetry, linear sweep voltammetry, and square wave voltammetry (SWV). In 0.1 M phosphate buffer solution (pH 4.5), the modified electrode resolved the electrochemical response of DA, UA, G, and A into four well-defined voltammetric oxidation peaks by SWV; the oxidation peak current of DA, UA, G, and A increased 13-, 6-, 7-, and 9-fold, respectively, compared with those at the bare GCE and the SWV peak currents of DA, UA, G, and A with linear concentrations in the ranges of 0.1–50, 0.1–50, 0.1–50, and 0.1–60 μM, respectively. Based on this, a method for simultaneous determination of these species in mixture was setup. The detection limits were 10 nM for DA, 100 nM for UA, 8 nM for G, and 8 nM for A.  相似文献   

14.
用循环伏安法(CV)、线性扫描溶出伏安法(LSSV)研究了甲基对硫磷(MPT)在聚噻吩/纳米二氧化钛修饰玻碳电极(PTh-NTiO2/GCE)上的电化学行为.实验表明,该修饰电极能显著提高MPT的氧化还原峰电流,在B-R缓冲溶液(pH 5.72)中,于-0.662V( vs.SCE)处产生灵敏的不可逆还原峰,其峰电流与...  相似文献   

15.
尤文钰  杨铁金 《化学通报》2016,79(11):1035-1040
本文建立一种新型的青蒿素传感器。首先,在玻碳电极上滴涂氧化石墨,通过电化学方法将氧化石墨还原为石墨烯,然后,在石墨烯上沉积纳米银得到石墨烯/纳米银修饰电极,它作为检测青蒿素的电化学传感器。用此电极对青蒿素进行测定,并通过循环伏安法、差分脉冲伏安法、交流阻抗法等研究其电化学行为。该修饰电极在测定青蒿素溶液时,表现出较正的还原电位和较大的峰电流等优势;对其实验条件如电解质溶液的p H、应用电势等进行了探查,该电化学传感器在青蒿素溶液浓度范围为1.0×10-8~3.0×10-5mol/L时与其还原峰电流呈现良好的线性关系,最低检出限为1.2×10-9mol/L(S/N=3)。此外,对该传感器的稳定性和重现性等也进行了研究,获得令人满意的结果。  相似文献   

16.
《Electroanalysis》2017,29(6):1618-1625
An electrochemical sensor was developed based on gold nanoparticles incorporated in mesoporous MFI zeolite for the determination of purine bases. Au nanoparticles (AuNPs) were incorporated into the mesoporous MFI zeolite (AuNPs/m‐MFI) by post‐grafting reaction. The composite materials were characterized by transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and electrochemical methods. Au nanoparticles with a size of 5‐20 nm are uniformly dispersed in the pores of mesoporous MFI zeolite. And the morphology of MFI zeolite can be perfectly kept after pore expansion and Au nanoparticles incorporation. The electrocatalytic oxidation of purine bases (guanine and adenine in DNA) is investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface‐confined Au nanoparticles provide the good catalytic activity for oxidation of purine bases. The simultaneous detection of guanine and adenine can be achieved at AuNPs/m‐MFI composites modified glassy carbon electrode (GCE). The electrochemical sensor based on AuNPs/m‐MFI exhibits wide linear range of 0.5–500 μM and 0.8–500 μM with detection limit of 0.25 and 0.29 μM for guanine and adenine, respectively. Moreover, the electrochemical sensor is applied to evaluation of guanine and adenine in herring sperm DNA samples with satisfactory results.  相似文献   

17.
制备了金纳米粒子/碳纳米管修饰玻碳电极(AuNPs-CNTs/GCE),采用循环伏安法和线性扫描伏安法研究了4-壬基酚在修饰电极上的电化学行为,并建立了一种灵敏简便地检测4-壬基酚的电化学方法。优化了pH值、扫描速率、富集时间等测定参数,并计算出pH值与氧化峰电压、扫描速率与氧化峰电流之间的数量关系。在pH 10.0的BR缓冲溶液中,4-壬基酚在AuNPs-CNTs/GCE上出现灵敏的氧化峰,氧化电位为0.51 V。与裸玻碳电极(GCE)和单一碳纳米管修饰电极(CNTs/GCE)相比,AuNPs-CNTs/GCE明显提高了4-壬基酚的氧化电流。在优化实验条件下,4-壬基酚的浓度分别在0.05~4μmol/L和6~14μmol/L范围内与氧化峰电流呈良好的线性关系,检出限为0.023μmol/L,对于实际样品测定的回收率为95%~104%。该修饰电极具有良好的重现性和稳定性,可用于环境样品中4-壬基酚的直接检测。  相似文献   

18.
We report the electrochemical behavior of a 4‐nitroimidazole derivative, 1‐methyl‐4‐nitro‐2‐hydroxymethylimidazole (4‐NImMeOH), on glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNT). As dispersing agents, dimethylformamide (DMF) and water were used. The electrochemical response of the resulting electrodes was evaluated using linear sweep, cyclic and square‐wave voltammetry (LSV, CV and SWV). Several parameters such as medium pH, nature and concentration of the CNTs dispersion and accumulation time were tested. The optimal conditions determined for obtain better response were: pH 2, dispersion concentration=4 mg/mL of CNT in water, accumulation time=7 min. The MWCNT‐modified GCE exhibited attractive electrochemical properties producing enhanced currents with a significant reduction in the overpotential and good signal‐to‐noise characteristics, in comparison with the bare GCE. The modified electrode is highly repeatable for consecutive measurements, reaching a variation coefficient of 2.9% for ten consecutive runs.  相似文献   

19.
《中国化学会会志》2017,64(7):813-821
Zinc oxide nanoparticles (ZnO NPs ) were prepared by a simple, convenient, and cost‐effective wet chemical method using the biopolymer starch. The prepared ZnO NPs were characterized by X‐ray diffraction (XRD ), scanning electron microscopy (SEM ), energy‐dispersive X‐ray (EDX ), Fourier transform infrared (FT‐IR ), and UV ‐visible spectroscopic techniques. The average crystallite size calculated from XRD data using the Debye–Scherer equation was found to be 15 nm. The electrochemical behavior of caffeine (CAF ) was studied using a glassy carbon electrode (GCE ) modified with zinc oxide nanoparticles by cyclic voltammetry (CV ) and differential pulse voltammetry (DPV ). Compared to unmodified GCE , ZnO NPs‐ modified GCE (ZnO NPs MGCE ) exhibited excellent electrocatalytic activity towards CAF oxidation, which was evident from the increase in the peak current and decrease in the peak potential. Electrochemical impedance study suggested that the charge‐transfer capacity of GCE was significantly enhanced by ZnO NPs . The linear response of the peak current on the concentrations of CAF was in the range 2–100 μM . The detection limit was found to be 0.038 μM. The proposed sensor was successfully employed for the determination of CAF in commercial beverage samples.  相似文献   

20.
We report on a modified glassy carbon electrode (GCE) for sensing hydrogen peroxide (H2O2). It was constructed by consecutive electrochemical deposition of poly(anthranilic acid) and poly(diphenylamine sulfonate) on the GCE, followed by the deposition of copper oxide (CuO). The morphology and electrochemistry of the modified electrode was characterized by atomic force microscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The catalytic performance of the sensor was studied with the use of differential pulse voltammetry under optimized conditions. This sensor displayed significantly better electrocatalytic activity for the reduction of H2O2 in comparison to a GCE without or with modification with CuO or polymer films alone. The response to H2O2 is linear in the range between 0.005 to ~11 mM, and the detection limit is 0.18 μM (at an S/N of 3).
A new bio-mimetic sensor, CuO/PANA@PSDS/GCE, was prepared, it exhibited a better electrocatalytic activity toward the reduction of the H2O2 compared with that of the CuO/GCE, PANA@PSDS/GCE, and GCE. Its increased catalytic response was due to the polyaniline doped (PANA@PSDS) film, which enlarges the specific surface area of the electrode, and increases the loading of the CuO nano-particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号