首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A novel non‐enzymatic glucose sensor based on nickel hydroxide and intercalated graphene with ionic liquid (G‐IL) nanocomposite modified glass carbon electrode was fabricated. Scanning electron microscope, Fourier transform infrared spectra and energy dispersive X‐ray spectroscopy of the nanocomposite confirmed the morphology and ingredient of Ni(OH)2 as well as G‐IL. Moreover, experimental results of cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry indicated the sensing properties of Ni(OH)2 at Ni(OH)2/G‐IL modified electrode towards the typical electrocatalytic oxidation process of glucose at 0.43 V in 0.10 M NaOH. The current response was linearly related to glucose concentration in a range from 0.5 to 500 μM with a detection limit of 0.2 μM (S/N = 3) and sensitivity of 647.8 μA mM?1 cm?2. The response time of the sensor to glucose was less than 2 s. This work may be expected to develop an excellent electrochemical sensing platform of G‐IL as a catalysis carrier.  相似文献   

2.
This work reports the synthesis of nickel/nickel hydroxides nanoflakes (Ni/Ni(OH)2-NFs) at room temperature via a novel chemical deposition and exfoliation from a liquid crystal template mixture. The nickel ions dissolved in the interstitial aqueous domain of the Brij®78 hexagonal liquid crystal template were deposited by a reducing agent of sodium borohydride that concurrently reduces the nickel ions and generates extreme hydrogen gas bubbles, that exfoliated the nickel/nickel hydroxide layers. The Ni/Ni(OH)2-NFs crystal structure, morphology, and surface area characterizations revealed the formation of semi-crystalline α-Ni(OH)2 nanoflakes with a thickness of approximately 10 nm and a specific surface area of about 135 m2/g. The electrochemical measurements of cyclic voltammetry, chronoamperometry, and impedance analysis showed that the Ni/Ni(OH)2-NFs exhibited significant performance for the glucose non-enzymatic oxidation in an alkaline solution in comparison to the bare-nickel hydroxide (bare-Ni(OH)2) deposited without surfactant. The Ni/Ni(OH)2-NFs electrode showed superior glucose oxidation activity over the bare-Ni(OH)2 catalyst with a sensitivity of 1.078 mA mM?1 cm?2 with a linear concentration dependency range from 0.2 to 60 mM and a detection limit of 0.2 mM (S/N = 3). The enhanced electrochemical active surface area and mesoporosity of the 2D nanoflakes make the Ni/Ni(OH)2-NFs a promising catalyst in the application of glucose non-enzymatic sensing.  相似文献   

3.
The authors describe a nonenzymatic glucose sensor that was obtained by electrochemical deposition and oxidization of metallic nickel on the surface of nitrogen-doped reduced graphene oxide (N-RGO) placed on a glassy carbon electrode (GCE). An analysis of the morphology and chemical structure indicated the composite to possess a well-defined vermicular Ni(OH)2 nanorods combined with N-RGO. The electrochemical performance of the modified GCE with respect to the detection of glucose in 0.1 M NaOH was investigated by cyclic voltammetry and amperometry. The wrinkle and protuberance of N-RGO for loading of nanostructured Ni(OH)2 are found to increase electrical conductivity, surface area, electrocatalytical activity and stability. The modified GCE displays a high electrocatalytic activity towards the oxidation of glucose in 0.1 M NaOH solution. The lower detection limit is 0.12 μM at an applied potential of +0.45 V (vs Ag/AgCl) (S/N=3), and the sensitivity is 3214 μA mM?1 cm?2. The modified GCE possesses long-term stability, good reproducibility and high selectivity over fructose, sucrose and lactose.
Graphical abstract The composite of vermicular Ni(OH)2 nanorods combined with N-doped reduced graphene oxide is a viable catalyst for non-enzymatic electrochemical sensing of glucose.
  相似文献   

4.
We report on a nonenzymatic glucose sensor based on a glassy carbon electrode that was electrochemically modified with a nanocomposite prepared from nickel hydroxide and graphene. Scanning electron microscopy revealed that the nickel hydroxide in the nanocomposite was present in the form of a nanostructure of three-dimensional spheres that were assembled by many densely arranged nanosheets. The electrocatalytic activity of the electrode toward the oxidation of glucose was investigated by chronoamperometry. The current response was linearly related to the glucose concentration in the range from 1 to 10?μM, with a sensitivity of 494?μA?mM–1?cm–2 and a correlation coefficient of 0.9990, and a second range (from 10 to 1000?μM with a sensitivity of 328?μA?mM–1?cm–2 and a correlation coefficient of 0.9990). The detection limit was 0.6?μM at a signal-to-noise ratio of 3, and the response time was as short as 2?s.
Figure
As seen in the scanning electron microscopic image, three-dimension Ni(OH)2 spheres was decorated on the surface of graphene. Due to its excellent electrochemical properties and large specific surface area, the addition of graphene obviously promoted the current response to glucose at the Ni(OH)2 modified electrode.  相似文献   

5.
Ni(OH)2 nanoflowers were synthesized by a simple and energy‐efficient wet chemistry method. The product was characterized by scanning electron microscopy (SEM) and X‐ray powder diffraction (XRD). Then Ni(OH)2 nanoflowers attached multi‐walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (GCE) were proposed (MWCNTs/Ni(OH)2/GCE) to use as electrochemical sensor to detect hydrogen peroxide. The results showed that the synergistic effect was obtained on the MWCNTs/Ni(OH)2/GCE whose sensitivity was better than that of Ni(OH)2/GCE. The linear range is from 0.2 to 22 mmol/L, the detection limit is 0.066 mmol/L, and the response time is <5 s. Satisfyingly, the MWCNTs/Ni(OH)2/GCE was not only successfully employed to eliminate the interferences from uric acid (UA), acid ascorbic (AA), dopamine (DA), glucose (GO) but also NO2? during the detection. The MWCNTs/Ni(OH)2/GCE allows highly sensitive, excellently selective and fast amperometric sensing of hydrogen peroxide and thus is promising for the future development of hydrogen peroxide sensors.  相似文献   

6.
This work describes the development of a novel method for glucose determination exploiting a photoelectrochemical‐assisted batch injection analysis cell designed and constructed with the aid of 3D printer technology. The PEC‐BIA cell was coupled to a LED lamp in order to control the incidence of light on the Cu2O/Ni(OH)2/FTO photoelectroactive platform. The electrochemical characteristics of Cu2O/Ni(OH)2/FTO photoelectroactive platform were evaluated by cyclic voltammetry, amperometry, and electrochemical impedance spectroscopy. The PEC‐BIA cell presented linear response range, limit of detection based on a signal‐to‐noise ratio of three, and sensitivity of 1–1000 μmol L?1, 0.76 μmol L?1 and 0.578 μA L μmol?1, respectively. The PEC‐BIA method presented a mean value of the recovery values of 97.0 % to 102.0 % when it was applied to glucose determination in artificial blood plasma samples which indicates the promising performance of the proposed system to determine glucose.  相似文献   

7.
We report on the synthesis of cobalt dihydroxide [Co(OH)2] nanorods and their deposition on a 3-dimensional graphene network via chemical bath deposition. The structural characterization reveals deposited Co(OH)2 to consist of flower-like nanorods on a 3-dimensional graphene foam. The nanocomposite was used for glucose sensing by electrocatalytic oxidation of glucose in 1 M KOH solution. Cyclic voltammetry and amperometric studies revealed a high sensitivity for glucose (3.69 mA mM?1 cm?2) and a 16 nM detection limit. The nanocomposite offers a large effective surface (11.4 cm2) and is very selective for glucose over potentially interfering materials such as dopamine, ascorbic acid, lactose, fructose and urea, not the least due to a relatively low working potential of 0.6 V (vs. Ag/AgCl). The high sensitivity, low detection limit and very good selectivity of free-standing nanocomposite electrodes are attributed to the synergistic effect of (a) the good electrocatalytic activity of the NRs, and (b) the large surface area with high conductivity offered by the 3D graphene foam.
Graphical Abstract Cobalt hydroxide [Co(OH)2] nanorods were deposited on three dimensional graphene (3DG) by a chemical bath deposition method, and the resulting material was used as an electrode for non-enzymatic and specific sensing of glucose in 1 M KOH solution.
  相似文献   

8.
The present work reports a simple and single‐step hydrothermal synthesis of MoSe2?MoO3 composite for highly sensitive and selective electrochemical oxidation of nitrite. FESEM of the MoSe2?MoO3 hybrid revealed the formation of composite as laminated structure of different sizes piled up together as finger‐like MoSe2 bars whilst other physico‐chemical characterizations (XRD, FTIR, UV‐Vis, XPS) confirmed that co‐existence of MoO3 as a major by‐product of hydrothermal synthesis. The as‐fabricated MoSe2?MoO3 composite based nitrite sensor showed remarkable selectivity and reproducibility with <3s of response time, excellent sensitivity and detection limit of 10.84 A M?1 cm?2 (R2=0.996) and 0.1 μM, respectively, in the range of 2.5–80 μM. The obtained sensitivity can be credited to the high surface area obtained from 1T phase MoSe2 and α phase MoO3 as the sensing material. The developed sensor was effectively evaluated for electrochemical recognition of nitrite in the water samples (potable and tap water) gathered from an industrial area. This new and efficient MoSe2?MoO3 based electrode material offers a new frontier for the progress of a novel composites by simple and single‐step approach which can be used for progress of non‐enzymatic and inexpensive electrochemical sensors for a wide range of analytical applications.  相似文献   

9.
We studied sensor application of a graphene oxide and hematite (α‐Fe2O3/GO) composite electrode well‐characterized by the SEM and XRD. Through differential pulse voltammetry (DPV), oxidation of dexamethasone sodium phosphate (DSP) was studied at the surface of a glassy carbon electrode (GCE) modified with graphene oxide nanosheets (GO) and the α‐Fe2O3/GO composite. The values of the transfer coefficient (α) and the diffusion coefficient (D) of DSP were 0.5961 and 4.71×10?5 cm2 s?1 respectively. In the linear range of 0.1–50 μM, the detection limit (DL) was 0.076 μM. In the second step, a GCE was modified with α‐Fe2O3/GO composite and the DSP measurement step was repeated to analyzed and compare the effects of hematite nanoparticles present on graphene oxide surfaces. According to the results, α and D were 0.52 and 2.406×10?4 cm2 s?1 respectively and the DL was 0.046 μM in the linear range of 0.1–10.0 μM. The sensor is simple, inexpensive and uses blood serum.  相似文献   

10.
A simple glucose biosensor has been developed based on direct electrochemistry of glucose oxidase (GOx) immobilized on the reduced graphene oxide (RGO) and β‐cyclodextrin (CD) composite. A well‐defined redox couple of GOx appears with a formal potential of ~?0.459 V at RGO/CD composite. A heterogeneous electron transfer rate constant (Ks) has been calculated for GOx at RGO/CD as 3.8 s?1. The fabricated biosensor displays a wide response to glucose in the linear concentrations range from 50 µM to 3.0 mM. The sensitivity and limit of detection of the biosensor is estimated as 59.74 µA mM?1 cm?2 and 12 µM, respectively.  相似文献   

11.
Nanostructured alpha‐nickel hydroxide (α‐Ni(OH)2) immobilized on a Fluorine‐doped Tin Oxide (FTO) surface was explored for the construction of hydrogen peroxide amperometric Flow Injection Analysis (FIA) sensors. Their notable electrocatalytic activity and heterogeneous electron‐transfer rate were confirmed by the appearance of a broad and intense peak associated with the oxidation of hydrogen peroxide and the enhancement of sensibility in hydrodynamic conditions. The α‐Ni(OH)2 electrodes exhibited a broad dynamic range (5×10?6 to 1×10?3 mol L?1), low detection limit (2×10?7 mol L?1), good repeatability (RSD=1.29 % for 20 successive analyses), and a sensitivity greater than 500 µA mmol?1 L?1 cm?2.  相似文献   

12.
This article reports the fabrication of Acid Violet 34 (AV34)/nickel hydroxide nanosheets ultrathin film on the glassy carbon electrode (GCE) via the electrostatic layer‐by‐layer (LBL) technique, and its electrocatalytic oxidation for glucose was demonstrated. UV‐vis absorption and electrochemical impedance spectra indicate the uniform deposition of the LBL film, with a continuous and smooth film surface observed by SEM and AFM. The electrochemical performance of the ultrathin film was studied by cyclic voltammetry and chronoamperometry. The (AV34/Ni(OH)2)5 ultrathin film modified electrode displays a fast direct electron transfer attributed to the Ni2+/Ni3+ redox couple as well as remarkable electrocatalytic activity towards the oxidation of glucose. The linear response was obtained in the range 0.5–13.5 mM (R=0.9994) with a low detection limit (14 µM), high sensitivity (25.9 µA mM?1 cm?2), rapid response (less than 1 s) and excellent anti‐interference properties to the species including ascorbic acid (AA), uric acid (UA), acetamidophenol (AP) and structurally related sugars. Therefore, the AV34/Ni(OH)2 ultrathin film can be potentially used as a feasible electrochemical sensor for the determination of glucose.  相似文献   

13.
A novel glucose biosensor was developed based on the immobilization of glucose oxidase (GOx) on reduced graphene oxide incorporated with electrochemically deposited platinum and palladium nanoparticles (PtPdNPs). Reduced graphene oxide (RGO) was more hybridized by chemical and heat treatment. Bimetallic nanoparticles were deposited electrochemically on the RGO surface for potential application of the Pd? Pt alloy in biosensor preparation. The as‐prepared hybrid electrode exhibited high electrocatalytic activities toward H2O2, with a wide linear response range from 0.5 to 8 mM (R2=0.997) and high sensitivity of 814×10?6 A/mMcm2. Furthermore, glucose oxidase with active material was integrated by a simple casting method on the RGO/PdPtNPs surface. The as‐prepared biosensor showed good amperometric response to glucose in the linear range from 2 mM to 12 mM, with a sensitivity of 24×10?6 A/mMcm2, a low detection limit of 0.001 mM, and a short response time (5 s). Moreover, the effect of interference materials, reproducibility and the stability of the sensor were also investigated.  相似文献   

14.
A novel flower like 3D nickel/manganese dioxide (Ni/MnO2) nanocomposite was synthesized by a kind of simple electrochemical method and the formation mechanism of flower like structure was also researched. In addition, morphology and composition of the nanocomposite were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS). Then the Ni/MnO2 nanocomposites were applied to fabricate electrochemical non‐enzymatic glucose sensor. The electrochemical investigation for the sensor indicated that it possessed an excellent electrocatalytic property for glucose, and could applied to the quantification of glucose with a linear range from 2.5×10?7 to 3.5×10?3 M, a sensitivity of 1.04 mA mM?1 cm?2, and a detection limit of 1×10?7 M (S/N=3). The proposed sensor also presented attractive features such as interference‐free, and long‐term stability. The present study provided a general platform for the one‐step synthesis of nanomaterials with novel structure and can be extended to other optical, electronic and magnetic nanocompounds.  相似文献   

15.
We present a modified glassy carbon electrode as a sensing platform for glucose. It is based on a composite film prepared from Ni(II) ion, quercetin and graphene. The sensor was characterized by cyclic voltammetry. The electron transfer coefficient, reaction rate constant and catalytic rate constant were determined and found to be 0.53, 5.4?s?1 and 2.93?×?103?M?1 s?1, respectively. The catalytic current depends linearly on the concentration of glucose in the range from 3 to 900???M, with a detection limit of 0.5???M (at an S/R of 3). The sensor exhibits good reproducibility, stability, fast response, and high sensitivity.
Figure
Cyclic voltammograms of Ni(II)-Qu/Gr/GCE in 0.1?M NaOH solution at various scan rates (from inner to outer): 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0?V·s?1. Plot of I p versus ??1/2 and E p versus log??.  相似文献   

16.
Glucose concentration monitoring is important for the prevention, diagnosis and treatment of diabetes. In this work, a composite material of AgNPs/MOF‐74(Ni) was prepared for electrochemical determination of glucose. AgNPs/MOF‐74(Ni) was characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X‐ray photoelectron spectroscopy (XPS). The electrochemical properties of the glassy carbon electrodes modified with the AgNPs/MOF‐74(Ni) composites were characterized by cyclic voltammetry (CV) and current‐time curve (I‐t curve) with three electrode system. The determination of glucose with the electrode modified by AgNPs/MOF‐74(Ni) has a linear range of 0.01~4 mM with the correlation coefficient (R2) of 0.994. The detection limit is 4.7 μM (S/N=3) and the sensitivity is 1.29 mA ? mM?1 ? cm?2. In addition, this sensing system possesses reasonable reproducibility and stability. The good performance of electrochemical determination for glucose is attributed to the concerted effect of silver nanoparticles and MOF‐74(Ni) on the promotion of glucose oxidation  相似文献   

17.
Metallic Bi and Ni were co‐deposited onto the surface of glass carbon electrode (GCE) from the electrolyte solution containing their respective nitrate to fabricate a Bi/Ni alloy modified GCE (Bi/Ni‐GCE). The purpose is to study the influence of Bi3+ on the deposition of Ni and that of deposited Bi on the electrocatalytic performance of Ni to glucose in alkali solution. The results show that both redox signal of Ni(OH)2/NiOOH and Ni(OH)2/NiOOH mediated electrocatalysis to glucose is remarkably increased in the presence of Bi. It seems that there is a synergistic effect between Bi and Ni on each other’s redox electrochemistry. It’s possible that the firstly deposited Bi on GCE surface helps to the following nucleation and growth of Ni, leading to the deposition of more metallic Ni on GCE surface. An extremely attractive feature of Bi/Ni‐GCE is reflected by the fast response time to the electrocatalytic oxidation of glucose. The electrode nearly responses immediately after glucose is added and it reaches a steady‐state level within only 2 seconds, demonstrating a good electrocatalytic property of Bi/Ni‐GCE. The calibration plot is linear over the wide concentration range of 0–5.8 mM with a sensitivity of 33.96 µA/mM and a correlation coefficient of 0.9985. The detection limit of the glucose was found to be 0.59 µM at a signal‐to‐noise ratio of 3. The fabricated Bi/Ni‐GCE was successfully employed to analyze the glucose level in blood samples, exhibiting high accuracy, strong resistance against inference and good reliability in the practical applications.  相似文献   

18.
《Electroanalysis》2003,15(11):987-990
The electrochemical quartz crystal impedance (EQCI) technique has been applied to investigate glucose oxidation on bare and Ni(OH)2‐modified Au electrodes in 0.2 mol L?1 KOH aqueous solution. The EQCI responses suggest different contributions of H+‐release and OH?‐incorporation reactions of the Ni(OH)2‐film redox process in 0.2 mol L?1 aqueous KOH at different potentials. Glucose adsorption on the Ni(OH)2‐modified Au electrode was studied. A mechanism for potential cyclic redox process of glucose at Ni(OH)2‐modified Au electrode is suggested, mainly based on a comparative EQCI analysis with direct glucose oxidation on bare gold and glucose ad‐/desorption on Ni(OH)2 film.  相似文献   

19.
Photodeposition has been widely used as a mild and efficient synthetic method to deposit co‐catalysts. It is also worth studying how to synthesize non‐noble metal photocatalysts with uniform dispersion. Different synthetic conditions in photodeposition have a certain influence on particle size distribution and photocatalytic activity. Therefore, we designed experiments to prepare the inexpensive composite photocatalyst Ni(OH)2/g‐C3N4 by photodeposition. The Ni(OH)2 co‐catalysts disperse uniformly with particle sizes of about 10 nm. The photocatalytic hydrogen production rate of Ni(OH)2/g‐C3N4 reached about 19 mmol g?1 h?1, with the Ni(OH)2 deposition amount about 1.57 %. During 16 h stability testing, the rate of hydrogen production did not decrease significantly. The composite catalyst also revealed a good hydrogen production performance under sunlight. The Ni(OH)2 co‐catalyst enhanced the separation ability of photogenerated carriers, which was proved by surface photovoltage and fluorescence analysis.  相似文献   

20.
A approach was successfully employed for constructing a solid‐state electrochemiluminescence (ECL) immunosensor by layer‐by‐layer self‐assembly of multiwall carbon nanotubes (MWCNTs)‐Nafion composite film, Ru(bpy)32+/nano‐Pt aggregates (Ru‐PtNPs) and Pt nanoparticles (PtNPs). The influence of Pt nanoparticles on the ECL intensity was quantitatively evaluated by calculating the electroactive surface area of different electrodes with or without PtNPs to immobilize Ru(bpy)32+. The principle of ECL detection for target α‐fetoprotein antigen (AFP) was based on the increment of resistance after immunoreaction, which led to a decrease in ECL intensity. The linear response range was 0.01–10 ng mL?1 with the detection limit of 3.3 pg mL?1. The immunosensor exhibited advantages of simple preparation and operation, high sensitivity and good selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号