首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
α‐Synuclein (α‐Syn) aggregation is associated with Parkinson's disease (PD) pathogenesis. In PD, the role of oligomers versus fibrils in neuronal cell death is debatable, but recent studies suggest oligomers are a proximate neurotoxin. Herein, we show that soluble α‐Syn monomers undergo a transformation from a solution to a gel state on incubation at high concentration. Detailed characterization of the gel showed the coexistence of monomers, oligomers, and short fibrils. In vitro, the gel was highly cytotoxic to human neuroblastoma cells. The individual constituents of the gel are short‐lived species but toxic to the cells. They comprise a structurally heterogeneous population of α‐helical and β‐sheet‐rich oligomers and short fibrils with the cross‐β motif. Given the recent evidence of the gel‐like state of the protein associated with neurodegenerative diseases, the gel state of α‐Syn in this study represents a mechanistic and structural model for the in vivo toxicity of α‐Syn in PD.  相似文献   

2.
The reaction of glycidyl phenyl ether (GPE) with 1‐aminoalkanes‐intercalated α‐zirconium phosphate (α‐ZrP·1‐aminoalkane): 1‐aminoalkanes 1‐aminopropane (α‐ZrP·Pr), 1‐aminobutane (α‐ZrP·Bu), 1‐aminooctane (α‐ZrP·Oct), and 1‐aminohexadecane (α‐ZrP·Hed) was carried out at varying temperatures for 1 h periods. Reaction progress was not observed until the reactants were heated to 80 °C or above. On increasing the temperature, the conversion factors increased such that, at 140 °C, conversions of 62% (α‐ZrP·Pr), 60% (α‐ZrP·Bu), 67% (α‐ZrP·Oct), and 64% (α‐ZrP·Hed) were obtained. The thermal stabilities as latent initiators were tested: GPEs reacted with α‐ZrP·Pr, α‐ZrP·Bu, and α‐ZrP·Oct at 40 °C for 360 h achieved conversions of 83, 55, and 59%, respectively. In contrast, the reaction in the presence of α‐ZrP·Hed did not proceed at 40 °C. The order of the thermal stability of GPE in the presence of α‐ZrP·1‐aminoalkane intercalation compounds was: α‐ZrP·Hed > α‐ZrP·Bu ≈ α‐ZrP·Oct > α‐ZrP·Pr. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1854–1861  相似文献   

3.
Conversion of the intrinsically disordered protein α‐synuclein (α‐syn) into amyloid aggregates is a key process in Parkinson’s disease. The sequence region 35–59 contains β‐strand segments β1 and β2 of α‐syn amyloid fibril models and most disease‐related mutations. β1 and β2 frequently engage in transient interactions in monomeric α‐syn. The consequences of β1–β2 contacts are evaluated by disulfide engineering, biophysical techniques, and cell viability assays. The double‐cysteine mutant α‐synCC, with a disulfide linking β1 and β2, is aggregation‐incompetent and inhibits aggregation and toxicity of wild‐type α‐syn. We show that α‐syn delays the aggregation of amyloid‐β peptide and islet amyloid polypeptide involved in Alzheimer’s disease and type 2 diabetes, an effect enhanced in the α‐synCC mutant. Tertiary interactions in the β1–β2 region of α‐syn interfere with the nucleation of amyloid formation, suggesting promotion of such interactions as a potential therapeutic approach.  相似文献   

4.
Catalytic enantioselective α‐fluorination reactions of carbonyl compounds are among the most powerful and efficient synthetic methods for constructing optically active α‐fluorinated carbonyl compounds. Nevertheless, α‐fluorination of α‐nonbranched carboxylic acid derivatives is still a big challenge because of relatively high pKa values of their α‐hydrogen atoms and difficulty of subsequent synthetic transformation without epimerization. Herein we show that chiral copper(II) complexes of 3‐(2‐naphthyl)‐l ‐alanine‐derived amides are highly effective catalysts for the enantio‐ and site‐selective α‐fluorination of N‐(α‐arylacetyl) and N‐(α‐alkylacetyl) 3,5‐dimethylpyrazoles. The substrate scope of the transformation is very broad (25 examples including a quaternary α‐fluorinated α‐amino acid derivative). α‐Fluorinated products were converted into the corresponding esters, secondary amides, tertiary amides, ketones, and alcohols with almost no epimerization in high yield.  相似文献   

5.
The misfolding and aggregation of the protein α‐synuclein (α‐syn), which results in the formation of amyloid fibrils, is involved in the pathogenesis of Parkinson’s disease and other synucleinopathies. The emergence of amyloid toxicity is associated with the formation of partially folded aggregation intermediates. Here, we engineered a class of binding proteins termed β‐wrapins (β‐wrap proteins) with affinity for α‐synuclein (α‐syn). The NMR structure of an α‐syn:β‐wrapin complex reveals a β‐hairpin of α‐syn comprising the sequence region α‐syn(37–54). The β‐wrapin inhibits α‐syn aggregation and toxicity at substoichiometric concentrations, demonstrating that it interferes with the nucleation of aggregation.  相似文献   

6.
Many peptides and proteins with large sequences and structural differences self‐assemble into disease‐causing amyloids that share very similar biochemical and biophysical characteristics, which may contribute to their cross‐interaction. Here, we demonstrate how the self‐assembled, cyclic d,l ‐α‐peptide CP‐2 , which has similar structural and functional properties to those of amyloids, acts as a generic inhibitor of the Parkinson′s disease associated α‐synuclein (α‐syn) aggregation to toxic oligomers by an ?off‐pathway“ mechanism. We show that CP‐2 interacts with the N‐terminal and the non‐amyloid‐β component region of α‐syn, which are responsible for α‐syn′s membrane intercalation and self‐assembly, thus changing the overall conformation of α‐syn. CP‐2 also remodels α‐syn fibrils to nontoxic amorphous species and permeates cells through endosomes/lysosomes to reduce the accumulation and toxicity of intracellular α‐syn in neuronal cells overexpressing α‐syn. Our studies suggest that targeting the common structural conformation of amyloids may be a promising approach for developing new therapeutics for amyloidogenic diseases.  相似文献   

7.
Considerable attention has been paid to hybrid organic–inorganic nanocomposites for designing new optical materials. Herein, we demonstrate the energy and hole transfer of hybrid hole‐transporting α‐sexithiophene (α‐STH) nanoparticle–CdTe quantum dot (QD) nanocomposites using steady‐state and time‐resolved spectroscopy. Absorption and photoluminescence studies confirm the loss of planarity of the α‐sexithiophene molecule due to the formation of polymer nanoparticles. Upon photoexcitation at 370 nm, a nonradiative energy transfer (73 %) occurs from the hole‐transporting α‐STH nanoparticles to the CdTe nanoparticles with a rate of energy transfer of 6.13×109 s?1. However, photoluminescence quenching of the CdTe QDs in the presence of the hole‐transporting α‐STH nanoparticles is observed at 490 nm excitation, which is due to both static‐quenching and hole‐transfer‐based dynamic‐quenching phenomena. The calculated hole‐transporting rate is 7.13×107 s?1 in the presence of 42×10?8 M α‐STH nanoparticles. Our findings suggest that the interest in α‐sexithiophene (α‐STH) nanoparticle–CdTe QD hybrid nanocomposites might grow in the coming years because of various potential applications, such as solar cells, optoelectronic devices, and so on.  相似文献   

8.
Supramolecular inclusion complexes (ICs) involving polyhedral oligomeric silsesquioxane (POSS) capped poly(?‐caprolactone) (PCL) and α‐cyclodextrin (α‐CD) were investigated. POSS‐terminated PCLs with various molecular weights were prepared via the ring‐opening polymerization of ?‐caprolactone (CL) with 3‐hydroxypropylheptaphenyl POSS as an initiator. Because of the presence of the bulky silsesquioxane terminal group, the inclusion complexation between α‐CD and the POSS‐capped PCL was carried out only with a single end of a PCL chain threading inside the cavity of α‐CD, which allowed the evaluation of the effect of the POSS terminal groups on the efficiency of the inclusion complexation. The X‐ray diffraction results indicated that the organic–inorganic ICs had a channel‐type crystalline structure. The stoichiometry of the organic–inorganic ICs was quite dependent on the molecular weights of the POSS‐capped PCLs. With moderate molecular weights of the POSS‐capped PCLs (e.g., Mn =3860 or 9880), the stoichiometry was 1:1 mol/mol (CL unit/α‐CD), which was close to the literature value based on the inclusion complexation of α‐CD with normal linear PCL chains with comparable molecular weights. When the PCL chains were shorter (e.g., for the POSS‐capped PCL of Mn = 1720 or 2490), the efficiency of the inclusion complexation decreased. The decreased efficiency of the inclusion complexation could be attributed to the lower mobility of the bulky POSS group, which restricted the motion of the PCL chain attached to the silsesquioxane cage. This effect was pronounced with the decreasing length of the PCL chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1247–1259, 2007  相似文献   

9.
Native α‐cyclodextrin‐ (α‐CD) and permethylated α‐CD (PMeCD)‐based rotaxanes with various short alkylene chains as axles can be synthesized through a urea end‐capping method. Native α‐CD tends to form [3]‐ or [5]pseudorotaxanes and not [2]‐ or [4]pseudorotaxanes, which indicates that the coupled CDs act as a single fragment. End‐capping reactions of the pseudorotaxanes with C18 and C24 axle lengths do not occur because the axle termini are covered by the densely stacked CDs. The number of PMeCDs on the pseudorotaxane is flexible and mainly depends on the axle length. Peracetylated α‐CD (PAcCD)‐based rotaxanes are synthesized through O‐acetylation of the α‐CD‐based rotaxanes without any decomposition of the rotaxanated structures. The structures of PMeCD‐based [3]‐ and [4]rotaxanes, and the molecular dynamics calculations on [3]pseudorotaxanes, indicate that the tail face of PMeCDs is regularly directed toward the axle termini. On the basis of the results obtained, it can be concluded that the directions and numbers of CDs in rotaxanes containing short alkylene chains depend on 1) the interactions between CDs, 2) the length of the alkylene axle, and 3) the interactions between the axle end and tail face of the CD.  相似文献   

10.
This article reports the results of propylene/α‐olefin copolymerization and propylene/ethylene/α‐olefin terpolymerization using low concentrations (less than 5 mol %) of long α‐olefins such as 1‐octene, 1‐decene, and 1‐dodecene. Kinetics data are presented and discussed. The highest activity was found with the longest α‐olefin studied (1‐dodecene). A possible explanation is proposed for this and other characteristics of the polymers obtained. The effect of low‐ethylene contents (4 mol % in the gas phase) on the copolymerization of propylene/α‐olefins was also examined. The polymers synthesized were characterized by 13C NMR, gel permeation chromatography, DSC, Fourier transform infrared spectroscopy, and wide‐angle X‐ray scattering. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2005–2018, 2001  相似文献   

11.
The catalytic effects of 1,5,7‐Triazabicyclo[4.4.0]dec‐5‐ene (TBD) with 2‐methylimidazole‐intercalated α‐zirconium phosphate (α‐ZrP?2MIm) in the reaction of glycidyl phenyl ether (GPE) and hexahydro‐4‐methylphthalic anhydride (MHHPA) were investigated. The reaction did not proceed within 1 h at 60 °C. On increasing the temperature to 100 °C, the conversion reached 93% for 1 h. Without the addition of TBD, the conversion was 67% at 100 °C for 1 h. Under storage conditions at 25 °C for 7 days, the conversion of GPE was only 18%. The curing behavior of 2,2‐bis(4‐glycidyloxyphenyl)propane (DGEBA) and MHHPA in the presence of TBD with α‐ZrP?2MIm was evaluated by differential scanning calorimetry. The addition of TBD with α‐ZrP?2MIm as a latent thermal initiator, the storage stability was maintained and the reaction proceeded rapidly under heating conditions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2557–2561  相似文献   

12.
In this report, we have synthesized organic/inorganic hybrid peptide–poly(?‐caprolactone) (PCL) conjugates via ring opening polymerization (ROP) of ?‐caprolactone (CL) in the presence of two sequence defined peptide initiators, namely POSS‐Leu‐Aib‐Leu‐NH2 (POSS: polyhedral oligomeric silsesquioxane; Leu: Leucine; Aib: α‐aminoisobutyric acid) and OMe‐Leu‐Aib‐Leu‐NH2. Covalent attachment of peptide segments with the PCLs were examined by 1H and 29Si NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and FTIR spectroscopy. Supramolecular inclusion complexations of synthesized peptide‐PCL conjugates with α‐cyclodextrin (α‐CyD) were studied to understand the effect of POSS/OMe‐peptide moieties at the PCL chain ends. Inclusion complexation of peptide‐PCL conjugates with α‐CyD produced linear polypseudorotaxane, confirmed by 1H NMR, FTIR, powder X‐ray diffraction (PXRD), polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Extent of α‐CyD threading onto the hybrid peptide‐PCL conjugated polymers is less than that of α‐CyD threaded onto the linear PCL. Thus, PCL chains were not fully covered by the host α‐CyD molecules due to the bulky POSS/OMe‐peptide moieties connected with the one edge of the PCL chains. PXRD experiment reveals channel like structures by the synthesized inclusion complexes (ICs). Spherulitic morphologies of POSS/OMe‐peptide‐PCL conjugates were fully destroyed after inclusion complexation with α‐CyD and tiny nanoobjects were produced. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3643–3651.  相似文献   

13.
To develop polycondensation methods for poly(α‐amino acid)s, we describe a first examination to use yttrium triflate as a Lewis acid for polycondensation of α‐amino acid esters. In the absence of Lewis acid, no polycondensation of 2‐methoxyphenyl glycinate ( 1b ) at room temperature proceeded. While the polycondensation of 1b was carried out with 5 mol % yttrium triflate, a condensation product of glycine was obtained in 16% yield. Although polycondensation of 4‐nitrophenyl L ‐leucinate ( 1c ) and 4‐nitrophenyl L ‐valinate ( 1d ) were also promoted with 5 mol % yttrium triflate, the condensation products of both α‐amino acid esters were obtained in only a few percent yield. When 1d was polymerized in the presence of 100 mol % yttrium triflate, high molecular weight poly(L ‐valine) was obtained in 91% yield. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4731–4735, 2006  相似文献   

14.
α‐Fluorinated β‐amino thioesters were obtained in high yields and stereoselectivities by organocatalyzed addition reactions of α‐fluorinated monothiomalonates (F‐MTMs) to N‐Cbz‐ and N‐Boc‐protected imines. The transformation requires catalyst loadings of only 1 mol % and proceeds under mild reaction conditions. The obtained addition products were readily used for coupling‐reagent‐free peptide synthesis in solution and on solid phase. The α‐fluoro‐β‐(carb)amido moiety showed distinct conformational preferences, as determined by crystal structure and NMR spectroscopic analysis.  相似文献   

15.
α‐Amino phosphonic acid derivatives are considered to be the most important structural analogues of α‐amino acids and have a very wide range of applications. However, approaches for the catalytic asymmetric synthesis of such useful compounds are very limited. In this work, simple, efficient, and versatile organocatalytic asymmetric 1,2‐addition reactions of α‐isothiocyanato phosphonate were developed. Through these processes, derivatives of β‐hydroxy‐α‐amino phosphonic acid and α,β‐diamino phosphonic acid, as well as highly functionalized phosphonate‐substituted spirooxindole, can be efficiently constructed (up to 99 % yield, d.r. >20:1, and >99 % ee). This novel method provides a new route for the enantioselective functionalization of α‐phosphonic acid derivatives.  相似文献   

16.
A practical, catalytic entry to α,α,α‐trisubstituted (α‐tertiary) primary amines by C?H functionalisation has long been recognised as a critical gap in the synthetic toolbox. We report a simple and scalable solution to this problem that does not require any in situ protection of the amino group and proceeds with 100 % atom‐economy. Our strategy, which uses an organic photocatalyst in combination with azide ion as a hydrogen atom transfer (HAT) catalyst, provides a direct synthesis of α‐tertiary amines, or their corresponding γ‐lactams. We anticipate that this methodology will inspire new retrosynthetic disconnections for substituted amine derivatives in organic synthesis, and particularly for challenging α‐tertiary primary amines.  相似文献   

17.
In general, the complexation and gelation behavior between biocompatible poly(ε‐caprolactone) (PCL) derivatives and α‐cyclodextrin (α‐CD) is extensively studied in water, but not in organic solvents. In this article, the complexation and gelation behavior between α‐CD and multi‐arm polymer β‐cyclodextrin‐PCL (β‐CD‐PCL) with a unique “jellyfish‐like” structure are thoroughly investigated in organic solvent N,N‐dimethylformamide and a new heat‐induced organogel is obtained. However, PCL linear polymers cannot form organogels under the same condition. The complexation is characterized by rheological measurements, DSC, XRD, and SEM. The SEM images reveal that the complexes between β‐CD‐PCL and α‐CD present a novel topological helix porous structure which is distinctly different from the lamellar structure formed by PCL linear polymers and α‐CD, suggesting the unique “jellyfish‐like” structure of β‐CD‐PCL is crucial for the formation of the organogels. This research may provide insight into constructing new supramolecular organogels and potential for designing new functional biomaterials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1598–1606  相似文献   

18.
α‐Iminopyridine (α‐IP) is an important redox‐noninnocent ligand. The substituents on the imino function of α‐IPs have important impact on the reaction selectivity with diethylzinc. For the α‐IPs with a hydrogen substituent on the imino carbon, reduction occurred for the non‐bulky N‐substituents phenyl and 2‐methylphenyl groups, whereas alkyl addition and coupling reactions can be selectively achieved for the sterically bulky N‐substituents 2,6‐dimethylphenyl or 2,4,6‐trimethylphenyl group. However, for the α‐IPs with a CH3 substituent on the imino carbon, the deprotonation reaction happened regardless of the N‐substituents of 2‐methylphenyl or 2,6‐dimethylphenyl group. All the products were isolated and characterized by single‐crystal X‐ray diffraction. The possible mechanisms of these reactions were also discussed.  相似文献   

19.
In the presence of p‐nitrobenzoic acid, the O‐nitroso aldol reaction of nitrosobenzene with enolisable aldehydes may be promoted by commercially available α,α‐diphenylprolinol trimethylsilyl ether. The reaction proceeds with good yields and essentially complete enantioselectivity, with catalyst loadings in the 5–10 mol % range. The resulting α‐oxyaldehyde adducts may be transformed in situ into α‐oxyimines, which provide 1,2‐amino alcohols upon treatment with Grignard reagents, in good overall yield (45–59 %) and with typical diastereomeric ratios ≥95:5.  相似文献   

20.
Peptidylprolyl isomerases (PPIases) catalyze cis/trans isomerization of prolines. The PPIase CypA colocalizes with the Parkinson's disease (PD)‐associated protein α‐synuclein in cells and interacts with α‐synuclein oligomers. Herein, we describe atomic insights into the molecular details of the α‐synuclein/CypA interaction. NMR spectroscopy shows that CypA catalyzes isomerization of proline 128 in the C‐terminal domain of α‐synuclein. Strikingly, we reveal a second CypA‐binding site formed by the hydrophobic sequence 47GVVHGVATVA56, termed PreNAC. The 1.38 Å crystal structure of the CypA/PreNAC complex displays a contact between alanine 53 of α‐synuclein and glutamine 111 in the catalytic pocket of CypA. Mutation of alanine 53 to glutamate, as found in patients with early‐onset PD, weakens the interaction of α‐synuclein with CypA. Our study provides high‐resolution insights into the structure of the PD‐associated protein α‐synuclein in complex with the most abundant cellular cyclophilin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号