首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
Differential cross sections for collisions of metastable neon atoms with ground state neon atoms have been measured in the energy range 0.247–0.551 eV in a crossed nozzle beam experiment using heating and seeding techniques. At large angle, the cross sections exhibit a rainbow feature due to a hump in the 0u and 1u potentials. The present data are in good agreement with calculations based on potential energy curves deduced from previous experiments at thermal energy.  相似文献   

2.
A newly developed continuous wave broadband laser which lacks mode structure in the frequency domain is employed together with a single mode laser beam to decelerate and cool metastable neon atoms. The velocity of the atoms in the beam can be set to a desired velocity by tuning the frequency of the single mode laser.  相似文献   

3.
A supersonic beam of metastable neon atoms has been decelerated by exploiting the interaction between the magnetic moment of the atoms and time-dependent inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91 deceleration solenoids, the atoms were decelerated from an initial velocity of 580 m/s to final velocities as low as 105 m/s, corresponding to a removal of more than 95% of their initial kinetic energy. The phase-space distribution of the cold, decelerated atoms was characterized by time-of-flight and imaging measurements, from which a temperature of 10 mK was obtained in the moving frame of the decelerated sample. In combination with particle-trajectory simulations, these measurements allowed the phase-space acceptance of the decelerator to be quantified. The degree of isotope separation that can be achieved by multistage Zeeman deceleration was also studied by performing experiments with pulse sequences generated for (20)Ne and (22)Ne.  相似文献   

4.
The reaction of Ni atoms with molecular oxygen has been reinvestigated experimentally in neon matrices and theoretically at the DFT PW91PW91/6311G(3df) level. Experimental results show that i) the nature of the ground electronic state of the superoxide metastable product is the same in neon and argon matrices, ii) two different photochemical pathways exist for the conversion of the superoxide to the dioxide ground state (involving 1.6 or 4 eV photons) and iii) an important matrix effect exists in the Ni + O(2)--> Ni(O(2)) or ONiO branching ratios. Theoretical results confirm that the electronic ground state of the metastable superoxide corresponds to the singlet state, in agreement with former CCSD(T) calculations, but in contradiction with other recent works. Our results show that the ground electronic state of the dioxide is (1)Sigma(+)(g) with the lowest triplet and quintet states at slightly higher energy, consistent with the observation of weak vibronic transitions in the near infrared. The potential energy profiles are modelled for the ground state and nine electronic excited states and a pathway for the Ni(triplet) + O(2)(triplet) --> Ni(O(2)) or ONiO (singlet) reaction is proposed, as well as for the Ni(O(2)) --> ONiO photochemical reaction, accounting for the experimental observations.  相似文献   

5.
Recently Märk and collaborators [1, 2] reported the metastable emission of large fractions from argon and neon cluster ions after electron impact ionisation at high excess energies. The decay was interpreted as the result of an intra-cluster excitation of a metastable state by one of the electrons involved in the ionisation process. Here we report the first direct observation of such a correlated two electron process during photoionisation of argon clusters using synchroton radiation and the TPEPICO technique. We observe at least two distinct maxima of the metastable TPEPICO spectrum at around 27 eV and 28.5 eV, the former being consistent with the previously reported energetic threshold for electron impact ionisation [1, 2].  相似文献   

6.
An atomic absorption spectrophotometric technique is described for the determination of neon and argon, respectively, in helium. The accuracies obtained for nanomoles of neon and argon, respectively, were +2.1 and -1.5%. Two Geissler-type discharge tubes containing neon and argon, respectively, were used as emission sources; the absorption source was a quartz cell which contained the sample and related standards that were excited by a high-frequency oscillator. The spectral lines that were employed were neon 6402 Å and argon 8115 Å. Because the spectral lines used had transitions to metastable energy levels, instead of ground levels, a conventional monochromator was suitable.  相似文献   

7.
The molecular dynamics method is used to simulate argon solutions in water and a thin water film–argon system at low temperatures. The correlation in motions of two closely spaced argon atoms is of another nature than the correlation of two neon atoms in a neon solid solution in ice II. The structure of hydrate shells of argon atoms contains five-membered rings composed of water molecules. The solubility of argon in a water film at low temperatures is noticeably higher than at room temperature. If a water film is first cooled to the glassy state and then argon atoms are added to it, then approximately as many argon atoms are absorbed on the film surface as they are present in a cooled film in equilibrium with the argon atmosphere. Argon atoms migrate from one pit to another on the rough surface of a solid water film.  相似文献   

8.
Rate coefficients were calculated for vibrational relaxation and collision-induced dissociation of ground state xenon fluoride in neon at temperatures between 300 and 1000 K for each of nine vibrational levels. These coefficients were calculated using a pairwise additive potential energy surface, which consists of a Morse function for the XeF interaction and Lennard–Jones functions for the NeXe and NeF interactions. Rate coefficients are provided for both temperature and v- dependences. The vibrational relaxation and dissociation processes occur by multiquanta transitions. Dissociation can take place from all v-levels provided that the internal energy of the XeF molecule is close to the rotationless dissociation limit. The order of increase effectiveness of the various forms of energy in promoting dissociation in XeF was found to be translation–rotation-vibration. At room temperature, neon atoms were found to be more efficient than helium atoms in the dissociation processes; helium atoms were found to be more efficient than neon atoms in the vibrational relaxation of XeF. Strong vibration–rotation coupling in both vibrational relaxation and in the dissociation processes is demonstrated.  相似文献   

9.
1-Azulenylcarbene was synthesized by photolysis of 1-azulenyldiazomethane in argon or neon matrices at 3-10 K. The highly polar singlet carbene is only metastable and undergoes a tunneling rearrangement to 8-methylene-bicyclo[5.3.0]deca-1,3,5,6,9-pentaene. After substitution of the 4 and 8 positions with deuterium, the rearrangement is completely inhibited. This indicates a very large kinetic isotope effect, as expected for a tunneling reaction.  相似文献   

10.
11.
The silver cluster formed in a solid neon matrix at 4 K is shown to be composed of seven silver atoms by its X-band ESR spectrum.  相似文献   

12.
The absorbance by metastable argon atoms of the Ar 696.543 nm line in the modified Grimm-type electrical discharge source was measured at different discharge conditions and at distances varying from 0.25 to 6 mm from the cathode. A uranium/argon hollow cathode lamp was used as primary source, which gave an argon gas temperature of 850 K when run at 12 mA. A maximum absorbance of 0.57 was found 3 mm from the cathode at 600 V, 80 mA. The magnitude of absorbance increases with discharge current while the position of maximum absorbance shifts away from the cathode with increase in discharge voltage. The quenching of metastable atoms by nitrogen is demonstrated.The spatial distribution of the intensity of four different types of spectral lines is shown. The approximate number densities of the different particles are 1012cm?3 for metastable argon atoms, 1016cm?3 for neutral argon atoms, 1013 cm?3 for sputtered copper atoms and 1014cm?3for electrons.  相似文献   

13.
The two electron-one photon transitions occuring in slow collisions of fully stripped neon atoms with solid targets have been interpreted in terms of trapping ofL-shell electrons in bare neon atoms from the solid target and subsequent transitions toK-shell. Experimental X-ray spectra and transition probabilities can be interpreted in terms of actual transitions occurring in such cases explicitly by the present theoretical calculations which takes care of correlation and relaxation effects.  相似文献   

14.
Reaction products of laser‐ablated praseodymium atoms with fluorine in excess neon, argon, krypton, or neat fluorine at 4—10 K are investigated by IR spectroscopy and quantum chemical DFT and coupled‐cluster calculations.  相似文献   

15.
The incorporation of noble gas atoms, in particular neon, into the pores of network structures is very challenging due to the weak interactions they experience with the network solid. Using high‐pressure single‐crystal X‐ray diffraction, we demonstrate that neon atoms enter into the extended network of ammonium metal formates, thus forming compounds Nex[NH4][M(HCOO)3]. This phenomenon modifies the compressional and structural behaviours of the ammonium metal formates under pressure. The neon atoms can be clearly localised within the centre of [M(HCOO)3]5 cages and the total saturation of this site is achieved after ~1.5 GPa. We find that by using argon as the pressure‐transmitting medium, the inclusion inside [NH4][M(HCOO)3] is inhibited due to the larger size of the argon. This study illustrates the size selectivity of [NH4][M(HCOO)3] compounds between neon and argon insertion under pressure, and the effect of inclusion on the high‐pressure behaviour of neon‐bearing ammonium metal formates.  相似文献   

16.
Penning ionization of formic acid (HCOOH), acetic acid (CH3COOH), and methyl formate (HCOOCH3) upon collision with metastable He*(2(3)S) atoms was studied by collision-energy/electron-energy-resolved two-dimensional Penning ionization electron spectroscopy (2D-PIES). Anisotropy of interaction between the target molecule and He*(2(3)S) was investigated based on the collision energy dependence of partial ionization cross sections (CEDPICS) obtained from 2D-PIES as well as ab initio molecular orbital calculations for the access of a metastable atom to the target molecule. For the interaction potential calculations, a Li atom was used in place of He*(2(3)S) metastable atom because of its well-known similarity in interaction with targets. The results indicate that in the studied collision energy range the attractive potential localizes around the oxygen atoms and that the potential well at the carbonyl oxygen atom is at least twice as much as that at the hydroxyl oxygen. Moreover we can notice that attractive potential is highly anisotropic. Repulsive interactions can be found around carbon atoms and the methyl group.  相似文献   

17.
Laser-ablated U atoms co-deposited with CO in excess neon produce the novel CUO molecule, which forms distinct Ng complexes (Ng=Ar, Kr, Xe) with the heavier noble gases. The CUO(Ng) complexes are identified through CO isotopic and Ng reagent substitution and comparison to results of DFT frequency calculations. The U[bond]C and U[bond]O stretching frequencies of CUO(Ng) complexes are slightly red-shifted from neon matrix (1)Sigma(+) CUO values, which indicates a (1)A' ground state for the CUO(Ng) complexes. The CUO(Ng)(2) complexes in excess neon are likewise singlet molecules. However, the CUO(Ng)(3) and CUO(Ng)(4) complexes exhibit very different stretching frequencies and isotopic behaviors that are similar to those of CUO(Ar)(n) in a pure argon matrix, which has a (3)A" ground state based on DFT vibrational frequency calculations. This work suggests a coordination sphere model in which CUO in solid neon is initially solvated by four or more Ne atoms. Up to four heavier Ng atoms successively displace the Ne atoms leading ultimately to CUO(Ng)(4) complexes. The major changes in the CUO stretching frequencies from CUO(Ng)(2) to CUO(Ng)(3) provides evidence for the crossover from a singlet ground state to a triplet ground state.  相似文献   

18.
A Boltzmann plot for many iron atomic lines having excitation energies of 3.3–6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3–4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas.  相似文献   

19.
The molecular dynamics with quantum transitions (MDQT) method is applied to study the fragmentation dynamics of neon clusters following vertical ionization of neutral clusters with 3 to 14 atoms. The motion of the neon atoms is treated classically, while transitions between the adiabatic electronic states of the ionic clusters are treated quantum mechanically. The potential energy surfaces are described by the diatomics-in-molecules model in a minimal basis set consisting of the effective 2p orbitals on each neon atom for the missing electron. The fragmentation mechanism is found to be rather explosive, with a large number of events where several atoms simultaneously dissociate. This is in contrast with evaporative atom by atom fragmentation. The dynamics are highly nonadiabatic, especially at shorter times and for the larger clusters. Initial excitation of the neutral clusters does not affect the fragmentation pattern. The influence of spin-orbit coupling is also examined and found to be small, except for the smaller size systems for which the proportion of the Ne+ fragment is increased up to 43%. From the methodological point of view, most of the usual momentum adjustment methods at hopping events are shown to induce nonconservation of the total nuclear angular momentum because of the nonzero electronic to rotation coupling in these systems. A new method for separating out this coupling and enforcing the conservation of the total nuclear momentum is proposed. It is applied here to the MDQT method of Tully but it is very general and can be applied to other surface hopping methods.  相似文献   

20.
Oxidative addition products OLnF2 (Ln: lanthanide) and OLnF are obtained by condensation of laser-ablated Ln atoms with OF2 in excess argon or neon at 4 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号