首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ternary complex kinetic model for metallomicellar catalysis was employed to investigate the effect of Zn2+ ion or Ni2+ion complexes of long alkyl-pyridines with hydroxyl groups in micellar solution on the hydrolysis of p-nitrophenyl picolinate in this paper. The kinetic and the thermodynamic parameters (K N, K r, K M) were obtained. More worthily, the effect of pH on the hydrolysis of p-nitrophenyl picolinate in metallomicellar phase was discussed quantitatively. The rate constant (K N) of the hydrolysis of p-nitrophenyl picolinate in metallomicellar phase was obtained and compared with Cu2+ ion complex system. The results indicated that Cu2+ ion micelle, Ni2+ ion micelle and Zn2+ ion micelle all exhibited great catalytic effects on the hydrolysis of p-nitrophenyl picolinate. and the order of activity is:Cu2+ ion micelle ≥ Ni2+ ion micelle ≥ Zn2+ ion micell. Moreover, the reasonability of the ternary complex kinetic model was verified further.  相似文献   

2.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

3.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006  相似文献   

4.
Ruthenium (II) complex-containing polymers were prepared and characterized by absorption and luminescence spectra, luminescence quantum yield, and luminescence lifetime. The polymers are Ru(bpy)2(poly-6-vinyl-2,′2-bipyridine)CI2 ( 1 ) and Ru(bpy)2(poly-4-methyl-4′-methyl-4′ -vinyl-2,2′-bipyridine)CI2 ( 2 ). The absorption spectra and luminescence spectra of polymers 1 and 2 were substantially the same as that of Ru(bpy)3CI2. The lifetime of polymers 1 and 2 was similar to that of the respective monomer model compounds. The lifetime of polymer 1 was very short (ca. 13 ns) in comparison to Ru(bpy)3CI2 (660 ns), whereas the lifetime of polymer 2 (660 ns) was similar to that of Ru(bpy)3CI2. The temperature-dependency of the lifetime was discussed in terms of Watts' model.  相似文献   

5.
6.
The title cationic surfactants have been synthesized by reaction of carboxylic acids with N, N-dimethylethylenediamine to give an intermediate amidoamine. The latter was quaternized with methyl iodide; the product was transformed into the corresponding chloride surfactant by ion-exchange on a macroporous resin. Adsorption and aggregation of these surfactants in H 2O have been studied by surface tension measurement. Additionally, solution conductivity, electromotive force (H 2O), and Fourier transform IR spectroscopy (D 2O) have been employed to investigate micelle formation. Increasing the length of R resulted in the following changes: an increase in the micelle aggregation number; a decrease in the minimum area per surfactant at the solution/air interface, the critical micelle concentration, and the degree of counterion dissociation. Gibbs free energies of adsorption at the solution/air interface and micelle formation in water were calculated and compared to those of alkyltrimethylammonium chlorides. The contribution to these free energies from surfactant methylene groups (in the hydrophobic tail) and the head group was calculated. The former are similar to those of other cationic surfactants. The corresponding free-energy contributions of head groups are smaller (i.e., more negative), indicating that the transfer of this group from bulk water to the interface (for adsorption) and/or to the micelle (aggregate formation) is more favorable. This is attributed to intermolecular hydrogen bonding of monomers at the interface, and/or in the aggregate, via the amide group, in agreement with our Fourier transform IR data. Our results are compatible with a micellar interface closer to the amide nitrogen than to the quaternary ammonium ion.  相似文献   

7.
The structure transitions of the aggregates in the sodium oleate (NaOA)/N-(3-(dimethylamino)propyl)-octanamide (DPOA) aqueous system was investigated upon CO2 stimuli. During the process of bubbling of CO2, three appearance states of sol, gel, and emulsion with little white precipitate were observed continuously. The cryo-transmission electron microscope characterization and rheological measurements exhibited that the sol–gel transition was attributed to a spherical-wormlike micelle transition. Moreover, this transition was switchable at least three cycles in the pH range of 10.91–9.56 by CO2 stimuli and pH regulation (adding NaOH), which could be explained by the protonation of DPOA and deprotonation of DPOA · H+. Bubbling of CO2 resulted in protonation of DPOA, which not only inserted into the OA as a co-surfactant but also screened the electrostatic repulsion among OA, corporately leading to the spherical-wormlike micelle transition. Adding NaOH caused the deprotonation of DPOA · H+ and hence reversed this transition. This surfactant system with switchable micelle transition not only displays tremendous application potential in various fields but also is of key importance in cyclic utilization of surfactant.  相似文献   

8.
SANS data on micellar solutions of C12E6 as a function of temperature have been reanalysed using a cylinder growth model. Reasonably good fits to the experimental curves were obtained using only the rod length as an adjustable parameter. The effect of polydispersity in the micelle size on the scattering profile was also investigated. Our main conclusion is that SANS is not a sufficiently sensitive technique to allow a clear identification of the micelle structure(s) at elevated temperatures.  相似文献   

9.
The exritation energy transfer processes in monomeric phycoerythrocyanins (PEC) have been studied in detail using steady-state and time-resolved fluorescence spectra techniques as well as the deconvolution tech-nique of spectra. The results indicate that the energy transfer processes should take place between α84,-PVB and β84- or β155-PCB chromophores. the time constants of energy transfer are 34.7 and 130 ps individually; the component with lifetime of 1.57 ns originates from the fluorescence lifetime of the terminal emitter of β84- and /or β155 -PCB chro-mophores; and the component with lifetime of 515 ps might be assigned to the energy transfer between two PCB chro-mophores of β subunit. Project supported by the National Natural Science Foundation of China.  相似文献   

10.
The physicochemical properties of the, - type (bolaform) surfactant, eicosane-1, 20-bis(triethylammonium bromide) (C20Et6), in aqueous solution have been investigated by means of surface tension, electrical conductivity, dye solubilization, and time-resolved fluorescence quenching (determination of average micelle aggregation number). Using electrical conductivity, the critical micelle concentration of C20Et6 was found to be 6.0×10–3 mol dm–3 and the ionization degree of C20Et6 micelle was found to be 0.42. From surface tension measurments, the molecular area of C20Et6 at the air-water interface was about twice that of normal type surfactants such as dodecyltrimethylammonium bromide (DTAB). The solubilizing power of micellar solution of C20Et6 toward Orange OT was 1.0×10–2 mole of dye per mole of surfactant, i. e., slightly smaller than that of DTAB. The micelle aggregation number,N, was found to be 17±2 by time-resolved fluorescence quenching. C20Et6 showed a very small temperature dependence ofN, much less than for normal surfactants.  相似文献   

11.
The fluorescence intensity, lifetime and degree of polarization of octadecylrhodamine B (ORB) have been measured in order to examine the usefulness of this molecule as a probe of micelle properties for low-molecular-weight detergents and water-soluble triblock copolymers. The surfactants examined are hexadecyltrimethylammonium chloride (HTAC), Triton X-100 (TX-100), sodium dode-cylsulfate (SDS), sodium tetradecylsulfate (STS), and Pluronic L64 (ethylene oxide [EO]13 propylene oxide30 EO13, L64). The fluorescence intensity and degree of polarization of ORB show drastic increases at the critical micelle concentrations (CMC) of HTAC, TX-100 and L64, indicating that ORB is cooperatively incorporated into the micelles upon micellization. This feature demonstrates the validity of ORB as a probe for detecting micelle formation of these surfactants. However, in the case of SDS and STS, the fluorescence intensity starts to rise at concentrations far below the CMC, and the degree of polarization does not show significant changes at the CMC. The details of the interactions between ORB and the anionic surfactants have been unclear. These facts imply that some caution is needed for the applications of ORB to the systems containing anionic surfactants. The local viscosity of L64 micelles has been determined by polarization and lifetime measurements. The structure of the block copolymer micelles and the locations of the probe in the micelles are discussed in terms of the viscosity data.  相似文献   

12.
Effect of the micelles of anionic, cationic and non-ionic surfactants on the fluorescence quenching of 1- and 2-naphthols has been studied in the presence of copper ion. The excited state lifetime, dynamic and static quenching constants for these systems have been determined. Fluorescence quenching in water and SDS micelle is due to the collision of the fluorophore with the quencher with a small static component. The negatively charged naphtholate ions in the excited state are quenched with significantly higher rates than the neutral naphthol molecules, which are located further inside the mesophase. CTAB micelle is less effective than the SDS micelle for fluorescence quenching. The effect of CTAB on water-assisted excited-state deprotonation has been investigated in the presence of ZnSO4. For TX-100 micelle there is negligible quenching even at higher concentration of the quencher.  相似文献   

13.
Acrylic acid (AA) was grafted onto PET films by preirradiation method using a 60Co γ-radiation source. Microstructural investigation of the PET-g-AA copolymers has been carried out by wide angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA) and positron annihilation lifetime spectroscopy (PALS) techniques. The WAXD results showed only marginal variation in the crystallinity of the graft copolymers. Dynamic mechanical analysis showed an increase in the temperature of the α-relaxation and the tan δ value of subroom temperature secondary relaxations. From the PALS results, a complex variation of the free volume parameters, i.e. the o-positronium lifetime (τ3), its intensity (I3), fractional free volume (fv) and the intermediate lifetime component was observed for the graft copolymers. Multiple phenomena of the effect of secondary relaxations, additive behavior of the individual polymer free volume parameters and effects from interfacial defects have been invoked to understand the fluctuational nature of the free volume properties in the graft copolymers.  相似文献   

14.
The effects of inorganic salts on micellization and solubilization of prednisolone in aqueous solution of poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer (Pluronic P85) were studied. The effect of inorganic salts on decrease in the cloud point and the critical micelle concentration (cmc) of Pluronic P85 was the order of Na2HPO4 > NaH2PO4 > NaCl > NaBr. Moreover, it was found that Pluronic P85 forms two kinds of micelles: monomolecular micelles and polymolecular micelles. The polymolecular micelle increased with increasing amount of added inorganic salts. Moreover, solubilization behavior is explained from the standpoint of salting out for prednisolone and association characteristics of Pluronic P85.  相似文献   

15.
We report the synthesis of a novel pH‐responsive amphiphilic block copolymer poly(dimethylaminoethyl methacrylate)‐block‐poly(pentafluorostyrene) (PDMAEMA‐b‐PPFS) using RAFT‐mediated living radical polymerization. Copolymer micelle formation, in aqueous solution, was investigated using fluorescence spectroscopy, static and dynamic light scattering (SLS and DLS), and transmission electron microscopy (TEM). DLS and SLS measurements revealed that the diblock copolymers form spherical micelles with large aggregation numbers, Nagg ≈ 30 where the dense PPFS core is surrounded by dangling PDMAEMA chains as the micelle corona. The hydrodynamic radii, Rh of these micelles is large, at pH 2–5 as the protonated PDMAEMA segments swell the micelle corona. Above pH 5, the PDMAEMA segments are gradually deprotonated, resulting in a lower osmotic pressure and enhanced hydrophobicity within the micelle, thus decreasing the Rh. However, the radius of gyration, Rg remains independent of pH as the dense PPFS cores predominate.

  相似文献   


16.
A doubly hydrophilic triblock copolymer poly(acrylic acid)-b-poly(ethylene glycol)-b-poly(acrylic acid) (PAA-b-PEO-b-PAA) with M w/M n = 1.15 was synthesized by atom transfer radical polymerization of t-butyl acrylate (tBA), followed by acidolysis of the PtBA blocks. The pH-sensitive micellization of PAA-b-PEO-b-PAA in acidic solution was investigated by potentiometric titration, fluorescence spectrum, dynamic light scattering and zeta potential. The pK a was 6.6 and 6.0 in deionized water and in 0.1 mol/L NaCl solution, respectively. The copolymer formed micelles composed of a weakly hydrophobic core of complexed PAA and PEO and a hydrophilic PEO shell in 1 mg/mL solution at pH < 5.5 due to hydrogen bonding. The critical micelle concentration was 0.168 mg/mL at pH 2.0. At pH < 4.5, steady and narrow distributed micelles were formed. Increasing pH to 5.0, unsteady and broad distributed micelles were observed. At pH > 5.5, the micelle was destroyed owing to the ionization of the PAA blocks.  相似文献   

17.
A series of amphiphilic triblock copolymers, poly[oligo(ethylene glycol) methacrylate]xblock‐poly(ε‐caprolactone)‐block‐poly[oligo(ethylene glycol) methacrylate]x, POEGMACo(x), were synthesized. Formation of hydrophobic domains as cores of the micelles was studied by fluorescence spectroscopy. The critical micelle concentrations in aqueous solution were found to be in the range of circa 10?6 M. A novel methodology by modulated temperature differential scanning calorimetry was developed to determine critical micelle temperature. A significant concentration dependence of cmt was found. Dynamic light scattering measurements showed a bidispersed size distribution. The micelles showed reversible dispersion/aggregation in response to temperature cycles with lower critical solution temperature between 75 and 85 °C. The interplay of the two hydrophobic and one thermoresponsive macromolecular chains offers the chance to more complex morphologies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
19.
采用非热注法成功制备了高质量的油溶性CuInS2/ZnS核壳量子点, 量子点的荧光发射峰在可见光到近红外范围内可调(550~800 nm), 且荧光量子产率最高达80%。本文进一步利用具有温敏特性的聚丙烯酰胺胶束作相转移剂, 成功地将油溶性的CuInS2/ZnS核壳量子点转移入水相。水相中自组装形成的CuInS2/ZnS量子点-胶束复合物不仅具有良好的荧光性质, 而且胶束原有的灵敏的热响应性被保留。这些研究初步表明, 无镉的低毒的CuInS2/ZnS量子点可作为纳米胶束的荧光示踪探针。  相似文献   

20.
采用非热注法成功制备了高质量的油溶性CuInS2/ZnS核壳量子点,量子点的荧光发射峰在可见光到近红外范围内可调(550~800 nm),且荧光量子产率最高达80%。本文进一步利用具有温敏特性的聚丙烯酰胺胶束作相转移剂,成功地将油溶性的CuInS2/ZnS核壳量子点转移入水相。水相中自组装形成的CuInS2/ZnS量子点-胶束复合物不仅具有良好的荧光性质,而且胶束原有的灵敏的热响应性被保留。这些研究初步表明,无镉的低毒的CuInS2/ZnS量子点可作为纳米胶束的荧光示踪探针。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号