首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
钠离子电池作为一种新型电化学能源已经受到了广泛关注.其工作原理与锂离子电池相类似,钠元素的储量比锂元素更为丰富、成本更加低廉,因此在大规模电能存储中有着广阔的应用前景.近年来,针对钠离子电池电极材料的研究日益增多,其中关于正极材料的研究主要集中于聚阴离子以及层状过渡金属氧化物材料两大类.层状过渡金属氧化物因其导电性好,并且层状结构更加稳定而成为人们研究的热点.本文针对层状过渡金属氧化物正极材料的结构以及电化学性能进行综述,总结并分析层状材料作为钠离子电池正极材料的可行性以及目前面临的问题,为今后钠离子电池层状正极材料的研究与应用提供理论指导.  相似文献   

2.
采用高温固相法合成了高钠含量的P2型层状氧化物钠离子电池正极材料Na0.93Li0.125Ni0.25Mn0.45Ti0.125Zn0.05O2(NLNMTZ).研究发现,该材料电化学曲线平滑,表现出良好的循环稳定性和出色的倍率性能.在20 mA/g下,容量高达117.6 mAh/g;在200 mA/g下,700次循环后容量保持率为80%.  相似文献   

3.
碳基负极材料比容量低,无法满足高能量密度电池的需求.为了进一步寻找高容量长循环寿命的电池负极材料,采用水热反应法制备了自支撑CoMoO4负极,通过X射线衍射(XRD)和扫描电子显微镜(SEM)对材料的结构、形貌进行表征,利用循环伏安法和恒电流充/放电等技术对比研究了材料在锂/钠离子电池中的电化学性能.结果表明,CoMoO4负极在锂离子电池中的首次可逆比容量为1 403.6 mAh/g,首次库伦效率为146.5%,在100 mA/g电流密度下经50次循环后仍然高达793.6 mAh/g;而CoMoO4负极在钠离子电池中首次可逆比容量仅为314.2 mAh/g,但经50次循环后容量保持率仍有76.4 %.该自支撑负极无需导电剂和粘结剂,电极材料与泡沫镍结合力强,具有优异的循环稳定性.  相似文献   

4.
钠与锂是同属第一主族的两种元素,二者化学性能相似,因钠相对锂在成本和储存需要方面都有明显优势,使得钠离子电池是极具潜力的锂离子电池替代品.为获得更为优异的电化学性能,钠离子电池负极储能材料的选用则显得尤为关键.随着钠离子电池研究的逐步推进,用于钠离子电池的负极储能材料也取得突破性进展,基于研究现状对金属化合物、碳基材料、合金材料、非金属单质四类常见负极材料研究进展进行了综述.  相似文献   

5.
采用共沉淀法、液氮冷淬工艺和热处理技术制备了高容量钠离子电池SnSbCo/rGO负极复合材料。通过XRD、SEM、TEM、恒流充放电和交流阻抗等测试分析技术对该负极材料进行表征和电化学性能测试。结果表明,在100 mA/g的电流密度下,经50次充放电循环后电极的可逆容量保持在567 mAh/g。同等条件下,纯SnSbCo的电极比容量为456mAh/g。SnSbCo/rGO负极复合材料的电化学性能的改善主要是由于rGO在提高复合材料导电性的同时,缓冲了SnSbCo合金颗粒由于团聚产生的体积膨胀效应。  相似文献   

6.
以天然橡胶为原材料制备硬碳材料,并探究其作为钠离子电池负极材料的性能.通过高温煅烧的方式,将天然橡胶在不同温度下煅烧制得硬碳材料.对不同温度下的硬碳材料进行结构表征,并测试其作为钠离子电池负极材料性能.通过结构参数和电化学性能对比,优化出制备硬碳材料的最佳煅烧温度.  相似文献   

7.
为提高动力电池的能量密度,以树叶模板法制备了具有多孔分级结构的Mn_2O_3材料.通过X射线电子衍射技术和扫描电子显微技术分别对材料的晶体结构和表面形貌进行了研究,结果表明制备的G-Mn_2O_3材料具有丰富的孔结构和较小的一次粒径.将制备材料作为锂离子电池和钠离子电池负极材料应用,并对材料的电化学性能进行了研究,与粉末Mn_2O_3材料相比,模板法制备的Mn_2O_3材料在锂离子电池中具有优异的电化学性能.  相似文献   

8.
《中国西部科技》2009,8(2):30-30
新华社长春电我国科学家近期宣布,经过科研人员多年的努力,我国新型锂离子电池材料研发取得重大突破,目前已能满足电动汽车大功率放电要求,技术水平处于国际领先地位。  相似文献   

9.
铁氧化物锂离子电池负极材料具有比容量高、资源丰富、价格便宜和环境友好等优势,是目前高容量负极材料的研究热点之一.然而,铁氧化物负极材料巨大的体积效应、较差的循环性能以及大的首次可逆容量损失,影响了其在锂离子电池中的应用.目前研究最多的铁氧化物负极材料是α-Fe2O3和Fe3O4,理论容量分别为1007 mA·h·g-1和924 mA·h·g-1.关于其电化学性能的改进方法,包括制备不同形貌与尺寸的纳米结构材料以及铁氧化物/碳纳米复合材料.介绍了铁氧化物锂离子电池负极材料的储锂机理及其存在的问题,综述了各类铁氧化物负极材料的制备方法、影响因素及电化学性能,并对铁氧化物负极材料的进一步研究、发展应用予以展望.  相似文献   

10.
钠离子电池具有潜在的高能量密度和明显的成本优势,近些年来受到广泛的研究和商业开发。其中,P2型层状氧化物材料因其制备简单、空气稳定性好而被认为是一种很有前景的正极材料,但实际可用可逆比容量较低。Mg掺杂可以触发阴离子氧O2-/(O2n-的氧化还原反应,进而提供可观的容量。但在阴离子氧化还原过程中会产生不可逆相变,使其循环性能变差,并且充放电过程中存在着严重的电压滞后现象。本文采用Mg和Co共掺的手段来调节晶体结构和电子结构,提高比容量的同时,减少电压滞后,提升循环性能。优选得到了正极材料P2-Na0.67Mg0.22Co0.22Mn0.56O2,在1.5~4.5V的电压区间内,可逆比容量为198mAh·g-1。相比于同体系的其他材料具有较好的循环稳定性和倍率性能,同时电压滞后现象得到明显改善,为设计新型层状氧化物正极材料提供了新思路。  相似文献   

11.
3V锂离子电池用层状α-Na0.67MnO2.26的电化学性能   总被引:1,自引:0,他引:1  
以Mn(CH3COO)2·4H2O和Na2CO3为原料,通过sol-gel技术合成前驱体,在600℃焙烧前驱体得到一种新的无水层状α-Na0.67MnO2.26材料.用等离子体光谱、X射线衍射仪、扫描电镜、恒流充放电和循环伏安(CV)等对产物的结构、组成、形貌及电化学性能进行研究.结果表明:得到的样品为稳定的六方层状P2结构,且颗粒细小;该样品在充放电电流密度为25 mA/g和电压为2.0~4.3 V时,首次充电比容量为188 mA·h/g,第2次放电比容量为176 mA·h/g,充放电库仑效率高达94%;在电压为2.0~4.3 V,电流密度为25,50,125和250 mA/g充放电条件下,其第2次放电比容量分别为176,168,139和110 mA·h/g,40次循环后,其放电比容量分别为150,142,121和105 mA·h/g,显示材料有较好的循环稳定性和大电流充放电性能.  相似文献   

12.
以Mn(CH3COO)2·4H2O和Na2CO3为原料,通过sol-gel技术合成前驱体,在600℃焙烧前驱体得到一种新的无水层状α-Na0.67MnO2.26材料。用等离子体光谱、X射线衍射仪、扫描电镜、恒流充放电和循环伏安(CV)等对产物的结构、组成、形貌及电化学性能进行研究。结果表明:得到的样品为稳定的六方层状P2结构,且颗粒细小;该样品在充放电电流密度为25mA/g和电压为2.0~4.3V时,首次充电比容量为188mA·h/g,第2次放电比容量为176mA·h/g,充放电库仑效率高达94%;在电压为2.0~4.3V,电流密度为25,50,125和250mA/g充放电条件下,其第2次放电比容量分别为176,168,139和110mA·h/g,40次循环后,其放电比容量分别为150,142,121和105mA·h/g,显示材料有较好的循环稳定性和大电流充放电性能。  相似文献   

13.
以CH_3COONa,Ni(CH_3COO)_2·4H_2O和Mn(CH_3COO)_2·4H_2O为原料,经过溶解、干燥和焙烧,得到产物Na(Ni_(0.5)Mn_(0.5))O_4.利用XRD,SEM对材料进行了结构和形貌的分析,结果显示产物含有少量的NiO相,呈片状形貌,颗粒小于5μm,有一定程度的团聚.对材料进行了不同倍率的充放电性能测试,产物展示了较好的电化学性能,0.1,0.2,0.5,1和5倍率时的放电容量分别为124,121,116.7,110.1和73.8mA·h/g.产物在2.0~4.0V电压区间充放电循环30次后,室温和55℃下的容量保持率分别为94.8%和91.1%,显示具有较好的高温性能,可以作为钠离子电池正极材料.  相似文献   

14.
O3型NaNi0.5Mn0.5O2拥有高理论比容量且易于制备,是商业钠离子(Na+)电池的首选正极材料之一,但其循环稳定性仍面临挑战。利用Bi对NaNi0.5Mn0.5O2进行改性。研究发现,Bi的引入可以在晶粒生长过程中通过调节表面能实现晶粒细化,并且Bi的掺杂增加了层状正极材料的晶胞参数,为Na+提供了宽的扩散通道,提高了Na+的扩散能力,优化了Na+在脱嵌过程中的可逆性。改性后的NaNi0.495Mn0.5Bi0.005O2实现了在2.0~4.0 V的电势区间内0.2 C倍率下的可逆容量为138.1 mAh/g,在5 C倍率下循环100圈后容量保持率可以达到97%。  相似文献   

15.
Li4Ti5O12作为锂离子电池负极材料电化学性能   总被引:12,自引:1,他引:12  
采用固相法合成了锂钛复合氧化物Li4Ti5O12,研究了保温时间对其结构及电化学性能的影响.结果表明,保温时间为2,4h时样品的循环性能比较好,在80mA/g充放电下,30次循环后的比容量可高达159mAh/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号