首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A variational method and a memory function approach are adopted to investigate the electron mobility parallel to the interface for a model AlxGa1-xAs/GaAs heterojunction and its pressure effect by considering optical phonon modes (including both of the bulk longitudinal optical (LO) in the channel side and interface optical (IO) phonons). The influence of a realistic interface heterojunction potential with a finite barrier and conduction band bending are taken into account. The properties of electron mobility versus Al concentration, electronic density and pressure are given and discussed, respectively. The results show that the electron mobility increases with Al concentration and electronic density, whereas decreases with pressure from 0 to 40 kbar obviously. The Al concentration dependent and the electron density dependent contributions to the electron mobility from the scattering of IO phonons under pressure becomes more obvious. The variation of electron mobility with the Al concentration and electron density are dominated by the properties of IO and LO phonons, respectively. The effect of IO phonon modes can not be neglected especially for higher pressure and electronic density.  相似文献   

2.
A detailed calculation of interface phonon assisted electron intersubband transition in double GaAs/AlGaAs quantum well structure is presented. Our calculation concentrates on the lowest two subbands which can be designed to be in resonance with a given interface phonon mode. Various phonon mode profiles display quasi-symmetric or quasi-antisymmetric shapes. The quasi-antisymmetric phonon modes give rise to much larger transition rates than those assisted by quasi-symmetric ones. The transition rate reaches a maximum when the subband separation coincides with a given phonon mode energy. The calculation procedure presented here can be easily applied to the design and simulation of other low dimensional semiconductor structures, such as quantum cascade lasers. Received 22 December 2002 Published online 23 May 2003 RID="a" ID="a"e-mail: bhwu@263.net  相似文献   

3.
We show how to compute nonlinear optical absorption spectra of an Asymmetric Double Quantum Well (ADQW) in the region of intersubband electronic transitions. The method uses the microscopic calculation of the dephasing due to electron-electron and electron-phonon scattering rates and the macroscopic real density matrix approach to compute the electromagnetic fields and susceptibilities. The polarization dephasing and the corrections to the Rabi frequencies due to the electron-electron interaction are also taken into account. For a proper choice of the QW widths and of the driving fields we obtain electromagnetically induced transparency. This transparency has a very narrow linewidth when a single driving field is applied resonant to the transition between the second and the third subband. In the case of two resonant driving fields or of a driving field resonant between the first and third subband we obtain a large transparency enhancement over the entire absorption spectrum. Results are given for GaAs/GaAlAs QWs and experiments are proposed. Received 21 June 2001 and Received in final form 21 January 2002  相似文献   

4.
In the presence of a magnetic field the Hamiltonian of the single or double polaron bound to a helium-type donor impurity in semiconductor quantum wells (QWs) are given in the case of positively charged donor center and neutral donor center. The couplings of an electron and the impurity with various phonon modes are considered. The binding energy of the single and double bound polaron in AlxlGa 1-xlAs/GaAs/AlxrGa 1-xrAs QWs are calculated. The results show that for a thin well the cumulative effects of the electron-phonon coupling and the impurity-phonon coupling can contribute appreciably to the binding energy in the case of ionized donor. In the case of neutral donor the contribution of polaronic effects are not very important, however the magnetic field significantly modifies the binding energy of the double donor. The comparison between the binding energies in the case of the impurity placed at the quantum well center and at the quantum well edge is also given. Received 16 February 1999  相似文献   

5.
A two-site double exchange model with a single polaron is studied using a perturbation expansion based on the modified Lang-Firsov transformation. The antiferromagnetic to ferromagnetic transition and the crossover from small to large polaron are investigated for different values of the antiferromagnetic interaction (J) between the core spins and the hopping (t) of the itinerant electron. Effect of the external magnetic field on the small to large polaron crossover and on the polaronic kinetic energy are studied. When the magnetic transition and the small to large polaron crossover coincide for some suitable range of J/t, the magnetic field has very pronounced effect on the dynamics of polarons. Received 1 June 2000  相似文献   

6.
Based on the dielectric continuum phonon model, uniaxialmodel and force balance equation the mobility of two dimensional electrongas in wurtzite AlxGa1-xN/GaN/AlxGa1-xN quantum wells isdiscussed theoretically within the temperature range dominated by opticalphonons. The dependences of the electron mobility on temperature, Al molarfraction and electron sheet density are presented including hydrostaticpressure effect. The built-in electric field is also taken into account. Itis found that under normal pressure the main contribution to the mobility isfrom the scattering of interface optical phonons in narrow (for well widthd < 12 Å) and wide (for d > 117 Å and d > 65 Å for finitelythick barriers and infinitely thick ones, respectively) wells, whereas thatis from the scattering of confined optical phonons in a well with anintermediate width. It is shown that the electron mobility decreases withincreasing Al molar fraction and temperature, whereas increases obviouslywith increasing electron sheet density. The theoretical calculated electronmobility is 978 cm2/V?s which is higher than an available experimentaldata 875 cm2/V?s when x equals to 0.58 at room temperature. Theresults under hydrostatic pressure considering the modification of strainindicate that the mobility increases slightly as hydrostatic pressureincreases from 0 to 10 GPa.  相似文献   

7.
The Feynman-Haken variational path integral theory is, for the first time, generalized to calculate the ground-state energy of an electron coupled simultaneously to a Coulomb potential and to a longitudinal-optical (LO) phonon field in parabolic quantum wires. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter and monotonically stronger as the effective wire radius decreases. We apply our calculations to several semiconductor quantum wires and find that the polaronic correction can be considerably large. Received 16 November 1998  相似文献   

8.
The general properties of one-dimensional large Fr?hlich polarons in motion are investigated with the previous extended coherent states where two-phonon correlations are considered. As a result, the polaron energy, velocity, effective mass, and average number of virtual phonons as a function the polaron total momentum are evaluated in a wide range of the coupling constant. In addition, rich information about virtual phonons emitted by the electron in motion is obtained. More importantly, some intrinsic features of 1D moving polarons are presented for the first time, which may also be suited to moving polarons in more than one dimensions. Received: 23 October 1997 / Revised and Accepted: 27 January 1998  相似文献   

9.
We consider in detail Raman scattering by vibration of the apical oxygen ions in the RBa2Cu3O7 superconducting cuprates. The scattering intensity is very sensitive to the ratio of diagonal and off-diagonal matrix elements of electron-phonon coupling, bandstructure, and carrier concentration. Our results show a large quantitative difference between the results of frozen-phonon and perturbational approach to the Raman process. The discrepancy becomes especially large when interband transitions to the states near the Fermi level are close to resonance with the incident light. The calculation of phonon-induced ion charge fluctuations shows an analogous discrepancy. The reason for these effects is the possibility of carrier redistribution between different parts of the Fermi surface arising in the frozen-phonon approximation. Our results show that Raman scattering in superconducting superlattices is very sensitive to the properties of the states near the Fermi level. For this reason experiments performed on the superlattices can help to resolve the discrepancy. Received 8 December 1999  相似文献   

10.
Localization and dephasing of conduction electrons in a low carrier density ferromagnet due to scattering on magnetic fluctuations is considered. We claim the existence of the “mobility edge”, which separates the states with fast diffusion and the states with slow diffusion; the latter is determined by the dephasing time. When the “mobility edge” crosses the Fermi energy a large and sharp change of conductivity is observed. The theory provides an explanation for the observed temperature dependence of conductivity in ferromagnetic semiconductors and manganite pyrochlores. Received 17 January 1999 and Received in final form 12 March 1999  相似文献   

11.
The inclusion of nonadiabatic corrections to the electron-phonon interaction leads to a strong momentum dependence in the generalized Eliashberg equations beyond Migdal's limit. For a s-wave symmetry of the order parameter, this induced momentum dependence leads to an enhancement of when small momentum transfer is dominant. Here we study how the d-wave symmetry affects the above behavior. We find that the nonadiabatic corrections depend only weakly on the symmetry of the order parameter provided that only small momentum scatterings are allowed for the electron-phonon interaction. In this situation, We show that also for a d-wave symmetry of the order parameter, the nonadiabatic corrections enhance . We also discuss the possible interplay and crossover between s- and d-wave depending on the material's parameters. Received 12 May 2000  相似文献   

12.
Within the past years the optical excitations of electrons have been measured for semiconductor samples of different isotope compositions. The isotope shift observed have been compared with calculations of the effects of electron-phonon interaction on the electronic band structure. While qualitative agreement has been obtained, some discrepancies remain especially concerning the E1 and transitions. We have remeasured the effect of isotope mass on the E1 and transitions of germanium with several isotopic compositions. The results, obtained by means of spectroscopic ellipsometry, confirm that the real part of the gap self-energies induced by electron-phonon interaction is larger than found from band structure calculations, while the imaginary part agrees with those calculations, which are based on a pseudopotential band structure and a bond charge model for the lattice dynamics. Our results agree with predictions based on the measured temperature dependence of the gaps. We compare our data for E1 and with results for the lowest direct (E0) and indirect (Eg) gaps. The measured values of and increase noticeably with increasing isotope mass. Similar effects have been observed in the temperature dependence of in and . A microscopic explanation for this effect is not available. Received: 6 March 1998 / Revised: 27 April 1998 / Accepted: 15 May 1998  相似文献   

13.
We consider changes in the electron-phonon coupling in high-T c cuprates caused by site-selective oxygen isotope substitution. Contrary to the total substitution, the site-selective replacement influences the coupling constant for each phonon mode due to the induced changes in the phonon eigenvectors. The relative changes for some modes can be larger than 100%. The measured properties sensitive to these changes are discussed. Received 9 August 2001 and Received in final form 11 January 2002  相似文献   

14.
In this paper we study Peierls instabilities for a half-filled two-dimensional tight-binding model with nearest-neighbour hopping t and next nearest-neighbour hopping t' at zero and finite temperatures. Two dimerization patterns corresponding to the same phonon vector (π,π) are considered to be realizations of Peierls states. The effect of imperfect nesting introduced by t' on the Peierls instability, the properties of the dimerized ground state, as well as the competition between two dimerized states for each t' and temperature T, are investigated. It is found: (i). The Peierls instability will be frustrated by t' for each of the dimerized states. The Peierls transition itself, as well as its suppression by t', may be of second- or first-order. (ii). When the two dimerized states are considered jointly, one of them will dominate the other depending on parameters t' and T. Two successive Peierls transitions, that is, the system passing from the uniform state to one dimerized state and then to the other may take place with decrease of temperature. Implications of our results to real materials are discussed. Received 31 July 2001  相似文献   

15.
Based on a half-filled two-dimensional tight-binding model with nearest-neighbour and next nearest-neighbour hopping the effect of imperfect Fermi surface nesting on the Peierls instability is studied at zero temperature. Two dimerization patterns corresponding to a phonon vector (π,π) are considered. It is found that the Peierls instability will be suppressed with an increase of next nearest-neighbour hopping which characterizes the nesting deviation. First and second order transitions to a homogeneous state are possible. The competition between the two dimerized states is discussed. Received 22 December 2000  相似文献   

16.
The low frequency lattice dynamics and its relationship to the second order paraelectric-to-ferroelectric transition in Sn2P2S6 is studied. The dispersion branches of the acoustic and lowest lying optical phonons in the a*-c* plane have been obtained in the ferroelectric phase, for x-polarized phonons. Close to the phase transition a considerable softening is found for the lowest optical mode (Px), comparable to the behaviour observed in previous Raman investigations. As found previously in Sn2P2Se6, a strong coupling between the TO(Px) and TA(uxz) phonons is observed, although, apparently, not strong enough to lead to an incommensurate phase. The soft TO(Px) mode at the zone center is observed. The temperature dependence of its frequency and damping shows that the transition is not entirely displacive. At low temperatures an unusual apparent negative LO-TO splitting is observed which is shown to arise from the coupling of the x-polarized soft mode to the nearby z-polarized optical phonon. For comparison, the soft TO(Px) dispersion in the a*-b* plane is measured in both the paraelectric and ferroelectric phases. Consistent frequency changes and LO-TO splitting are observed, revealing a significant interaction between the TA(uyx) and LA(uxx) acoustics branches and the TO and LO soft optic branches, respectively. In contrast, the nearby y-polarized optic branch shows almost no temperature dependence. Finally, the influence of piezoelectric effects on the limiting acoustic slopes in the ferroelectric phase is discussed. Received: 11 May 1998 / Revised and Accepted: 15 June 1998  相似文献   

17.
We numerically investigate localization properties of electronic states in a static model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers with realistic parameters obtained by quantum-chemical calculation. The randomness in the on-site energies caused by the electron-phonon coupling is completely correlated to the off-diagonal parts. In the single electron model, the effect of the hydrogen-bond stretchings, the twist angles between the base pairs and the finite system size effects on the energy dependence of the localization length and on the Lyapunov exponent are given. The localization length is reduced by the influence of the fluctuations in the hydrogen bond stretchings. It is also shown that the helical twist angle affects the localization length in the poly(dG)-poly(dC) DNA polymer more strongly than in the poly(dA)-poly(dT) one. Furthermore, we show resonance structures in the energy dependence of the localization length when the system size is relatively small.  相似文献   

18.
In this paper we have introduced a variational approach to investigate the ground state of a model which includes both the Holstein electron-phonon interaction and the extended Hubbard electron-electron interaction. We have considered a variational state for the phonon subsystem which generalizes the previous used forms. This state allows to take into account the possibility of extended phonon mediated correlations. The effective electron Hamiltonian, which we have obtained, includes first and second neighbor electron-electron interaction terms. We have treated exactly, through a Lanczos method, this effective model in the one-dimensional case. We have applied our method to two Bechgaard salts and in these cases we have estimated the correlation parameters. We have shown that the introduction of electron-phonon interaction allows an estimate of the on site U and nearest-neighbor V Coulomb repulsion, which are in agreement with the experimental optical spectra of the above mentioned two compounds. Received: 30 October 1997 / Revised: 28 January 1998 / Accepted: 10 April 1998  相似文献   

19.
Peculiarities of transport properties of three- and two-dimensional half-metallic ferromagnets are investigated, which are connected with the absence of spin-flip scattering processes. The temperature and magnetic field dependences of resistivity in various regimes are calculated. The resistivity is proportional to T 9/2 for T < T * and to T 7/2 for T > T *, T* being the crossover temperature for longitudinal scattering processes. The latter scale plays also an important role in magnetoresistance. The contribution of non-quasiparticle (incoherent) states to the transport properties is discussed. It is shown that they can dominate in the temperature dependence of the impurity-induced resistivity and in the tunnel junction conductivity. Received 16 September 2002 / Received in final form 6 November 2002 Published online 31 December 2002  相似文献   

20.
Phonon conductivity in intermediately doped n-type silicon still remains unexplained. In this paper we have calculated the phonon conductivity in Li-doped silicon for Nex < Nc using Mikoshiba's inhomogeneity model. We have introduced spherical polar coordinates for the phonon polarization vectors in Sota and Suzuki's theory in order to take into account the realistic picture of the scattered phonons. Deformation potential for different polarizations λ has been evaluated for the metallic region. Present calculations show that Mikoshiba's inhomogeneity model is able to explain the phonon conductivity of Li-doped silicon having intermediate donor concentration very well. Received 18 May 2001 / Received in final form 4 July 2002 Published online 19 December 2002 RID="a" ID="a"e-mail: mkroy@ctgu.edu  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号