首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An analytical solution is presented for the boundary-layer flow and heat transfer over a permeable stretching/shrinking surface embedded in a porous medium using the Brinkman model. The problem is seen to be characterized by the Prandtl number $Pr$ , a mass flux parameter $s$ , with $s>0$ for suction, $s=0$ for an impermeable surface, and $s<0$ for blowing, a viscosity ratio parameter $M$ , the porous medium parameter $\Lambda $ and a wall velocity parameter $\lambda $ . The analytical solution identifies critical values which agree with those previously determined numerically (Bachok et al. Proceedings of the fifth International Conference on Applications of Porous Media, 2013) and shows that these critical values, and the consequent dual solutions, can arise only when there is suction through the wall, $s>0$ .  相似文献   

2.
The present paper deals with the flow and heat transfer of a viscous fluid saturated in a porous medium past a permeable and non-isothermal stretching sheet with internal heat generation or absorption and radiation. Closed-form solutions to steady, two dimensional momentum equations with neglecting quadratic inertia terms and heat transfer equation are found using a similarity transformation. Asymptotic expressions of the temperature functions are also presented valid for both very large and very small modified Prandtl numbers. Attention is focused on the effects of porous parameter K, suction parameter R, radiation parameter Nr, viscosity ratio Λ, internal heat parameter α and Prandtl number P to the characteristics of flow and heat transfer.  相似文献   

3.
In this article, a similarity solution of the steady boundary layer flow near the stagnation-point flow on a permeable stretching sheet in a porous medium saturated with a nanofluid and in the presence of internal heat generation/absorption is theoretically studied. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations with the appropriate boundary conditions via Lie-group analysis. Copper (Cu) with water as its base fluid has been considered and representative results have been obtained for the nanoparticle volume fraction parameter f{\phi} in the range 0 £ f £ 0.2{0\leq \phi \leq 0.2} with the Prandtl number of Pr = 6.8 for the water working fluid. Velocity and temperature profiles as well as the skin friction coefficient and the local Nusselt number are determined numerically. The influence of pertinent parameters such as nanofluid volume fraction parameter, the ratio of free stream velocity and stretching velocity parameter, the permeability parameter, suction/blowing parameter, and heat source/sink parameter on the flow and heat transfer characteristics is discussed. Comparisons with published results are also presented. It is shown that the inclusion of a nanoparticle into the base fluid of this problem is capable to change the flow pattern.  相似文献   

4.
Numerical solutions for the free convection heat transfer in a viscous fluid at a permeable surface embedded in a saturated porous medium, in the presence of viscous dissipation with temperature-dependent variable fluid properties, are obtained. The governing equations for the problem are derived using the Darcy model and the Boussinesq approximation (with nonlinear density temperature variation in the buoyancy force term). The coupled non-linearities arising from the temperature-dependent density, viscosity, thermal conductivity, and viscous dissipation are included. The partial differential equations of the model are reduced to ordinary differential equations by a similarity transformation and the resulting coupled, nonlinear ordinary differential equations are solved numerically by a second order finite difference scheme for several sets of values of the parameters. Also, asymptotic results are obtained for large values of | f w|. Moreover, the numerical results for the velocity, the temperature, and the wall-temperature gradient are presented through graphs and tables, and are discussed. It is observed that by increasing the fluid variable viscosity parameter, one could reduce the velocity and thermal boundary layer thickness. However, quite the opposite is true with the non-linear density temperature variation parameter.  相似文献   

5.
Adopting a two-temperature and two-velocity model, appropriate to a bidisperse porous medium (BDPM) proposed by Nield and Kuznetsov (2008), the classical steady, mixed convection boundary layer flow about a horizontal, isothermal circular cylinder embedded in a porous medium has been theoretically studied in this article. It is shown that the boundary layer analysis leads to expressions for the flow and heat transfer characteristics in terms of an inter-phase momentum parameter, a thermal diffusivity ratio, a thermal conductivity ratio, a permeability ratio, a modified thermal capacity ratio, and a buoyancy or mixed convection parameter. The transformed partial differential equations governing the flow and heat transfer in the f-phase (the macro-pores) and the p-phase (the remainder of the structure) are solved numerically using a very efficient implicit finite-difference technique known as Keller-box method. A good agreement is observed between the present results and those known from the open literature in the special case of a traditional Darcy formulation (monodisperse system).  相似文献   

6.
The steady boundary-layer flow near the stagnation point on a vertical flat plate embedded in a fluid-saturated porous medium characterized by an anisotropic permeability is investigated. Using appropriate similarity transformation, the governing system of partial differential equations is transformed into a system of ordinary differential equations. This system is then solved numerically. The features of the flow and the heat transfer characteristics for different values of the governing parameters, namely, the modified mixed convection parameter Λ, and the anisotropy parameter A are analyzed and discussed. It is found that dual solutions exist for both assisting and opposing flows. Moreover, the range of Λ for which the solution exists increases with A.  相似文献   

7.
Rees  D. A. S.  Magyari  E.  Keller  B. 《Transport in Porous Media》2003,53(3):347-355
The effect of viscous dissipation on the development of the boundary layer flow from a cold vertical surface embedded in a Darcian porous medium is investigated. It is found that the flow evolves gradually from the classical Cheng–Minkowycz form to the recently discovered asymptotic dissipation profile which is a parallel flow.  相似文献   

8.
In a recent paper by Hamad and Pop (Transp Porous Med 2010) a comprehensive numerical study of the title problem has been reported. The goal of the present note is (i) to give exact analytical solutions of this model for some special cases of physical interest, and (ii) to point out that within the model considered by Hamad and Pop no essential distinguishing features between the convective heat transfer in nanofluids and in usual viscous fluids occur.  相似文献   

9.
A buoyancy-induced stationary flow with viscous dissipation in a horizontal porous layer is investigated. The lower boundary surface is impermeable and subject to a uniform heat flux. The upper open boundary has a prescribed, linearly varying, temperature distribution. The buoyancy-induced basic velocity profile is parallel and non-uniform. The linear stability of this basic solution is analysed numerically by solving the disturbance equations for oblique rolls arbitrarily oriented with respect to the basic velocity field. The onset conditions of thermal instability are governed by the Rayleigh number associated with the prescribed wall heat flux at the lower boundary, by the horizontal Rayleigh number associated with the imposed temperature gradient on the upper open boundary, and by the Gebhart number associated with the effect of viscous dissipation. The critical value of the Rayleigh number for the onset of the thermal instability is evaluated as a function of the horizontal Rayleigh number and of the Gebhart number. It is shown that the longitudinal rolls, having axis parallel to the basic velocity, are the most unstable in all the cases examined. Moreover, the imposed horizontal temperature gradient tends to stabilise the basic flow, while the viscous dissipation turns out to have a destabilising effect.  相似文献   

10.
11.
Steady mixed convection boundary layer flow from an isothermal horizontal circular cylinder embedded in a porous medium filled with a nanofluid has been studied for both cases of a heated and cooled cylinder. The resulting system of nonlinear partial differential equations is solved numerically using an implicit finite-difference scheme. The solutions for the flow and heat transfer characteristics are evaluated numerically for various values of the governing parameters, namely the nanoparticle volume fraction φ and the mixed convection parameter λ. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It is found that for each particular nanoparticle, as the nanoparticle volume fraction φ increases, the magnitude of the skin friction coefficient decreases, and this leads to an increase in the value of the mixed convection parameter λ which first produces no separation. On the other hand, it is also found that of all the three types of nanoparticles considered, for any fixed values of φ and λ, the nanoparticle Cu gives the largest values of the skin friction coefficient followed by TiO2 and Al2O3. Finally, it is worth mentioning that heating the cylinder (λ > 0) delays separation of the boundary layer and if the cylinder is hot enough (large values of λ > 0), then it is suppressed completely. On the other hand, cooling the cylinder (λ < 0) brings the boundary layer separation point nearer to the lower stagnation point and for a sufficiently cold cylinder (large values of λ < 0) there will not be a boundary layer on the cylinder.  相似文献   

12.
An analytical study of viscous dissipation effect on the fully developed forced convection Couette flow through a parallel plate channel partially filled with porous medium is presented. A uniform heat flux is imposed at the moving plate while the fixed plate is insulated. In the fluid-only region the flow field is governed by Navier–Stokes equation while the Brinkman-extended Darcy law relationship is considered in the fully saturated porous medium. The interface conditions are formulated with an empirical constant β due to the stress jump boundary condition. Fluid properties are assumed to be constant and the longitudinal heat conduction is neglected. A closed-form solution for the velocity and temperature distributions and also the Nusselt number in the channel are obtained and the viscous dissipation effect on these profiles is briefly investigated.  相似文献   

13.
We study flow and heat transfer to a cylinder in cross flow at Re = 3,900–80,000 by means of three-dimensional transient RANS (T-RANS) simulations, employing an RNG k − ε turbulence model. Both the case of a bare solid cylinder and that of a solid cylinder surrounded at some fixed distance by a thin porous layer have been studied. The latter configuration is a standard test geometry for measuring the insulating and protective performance of garments. In this geometry, the flow in the space between the solid cylinder and the porous layer is laminar but periodic, whereas the outer flow is transitional and characterized by vortex shedding in the wake of the cylinder. The results from the T-RANS simulations are validated against data from Direct Numerical Simulations and experiments. It is found that T-RANS is very well suited for simulating this type of flow. The transient nature of the flow underneath the porous layer is well reproduced, as well as the influence of vortex shedding on the heat transfer in the downstream stagnation zone. T-RANS results are found to be in much better agreement with DNS and experimental data than results from steady-state RANS.  相似文献   

14.
A boundary layer analysis is presented for the natural convection past an isothermal sphere in a Darcy porous medium saturated with a nanofluid. Numerical results for friction factor, surface heat transfer rate, and mass transfer rate have been presented for parametric variations of the buoyancy ratio parameter N r, Brownian motion parameter N b, thermophoresis parameter N t, and Lewis number L e. The dependency of the friction factor, surface heat transfer rate (Nusselt number), and mass transfer rate (Sherwood number) on these parameters has been discussed.  相似文献   

15.
16.
In this note, the mixed unsteady stagnation-point boundary layer over a vertical plate with mass transfer in a fluid-saturated porous medium is revisited. Closed-form analytical solutions are found and presented for a special value of the flow unsteadiness parameter. Multiple solution branches are obtained for certain controlling parameters. These solutions might offer more insights into the mixed convection flow characteristics compared with the numerical solutions.  相似文献   

17.
18.
The fully developed flow and H1 heat transfer in a polygonal duct filled with a Darcy–Brinkman medium is studied. The efficient method of boundary collocation is used. The problem is governed by the duct shape and a non-dimensional parameter s which characterizes the inverse square root of permeability. Asymptotic formulas for small and large s are derived.  相似文献   

19.
20.
An analysis is presented to investigate the effects of temperature-dependent viscosity, thermal dispersion, Soret number and Dufour number on non-Darcy MHD free convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a vertical isothermal surface embedded in a saturated porous medium. The governing partial differential equations are transferred into a system of ordinary differential equations, which are solved numerically using a fourth order Runge–Kutta scheme with the shooting method. Comparisons with previously published work by Hong and Tien [Hong, J. T. and Tien, C. L.: 1987, Int. J. Heat Mass Transfer 30, 143–150] and Sparrow et al. [Sparrow, E. M. et al.: 1964, AIAA J. 2 652–659] are performed and good agreement is obtained. Numerical results of the skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, temperature and concentration profiles are presented for different physical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号