首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用波长为800 nm的飞秒激光,在空气和去离子水中诱导钛表面形成不同的周期条纹结构。在空气中,激光能量密度为0.265 J/cm2时,钛表面主要形成周期为500~560 nm低空间频率条纹结构;激光能量密度为0.102 J/cm2时,主要形成的是周期为220~340 nm高空间频率条纹结构。两种条纹均垂直于入射激光偏振方向,且条纹周期随着脉冲重叠数的增大而增大。在水中,除形成垂直激光偏振方向、周期为215~250 nm的高空间频率条纹结构,还形成了平行于激光偏振方向且周期约为入射激光波长八分之一的高空间频率条纹结构。利用表面等离子体理论、二次谐波及Sipe理论对各种周期条纹结构的形成机理进行分析,发现周期条纹结构的形成与钛表面氧化层有密切的关系。  相似文献   

2.
Plasmonic structures are prepared on bimetal films evaporated onto glass substrates applying a multi-step process, and atomic force microscopy is utilized to study the structures after each step. Sub-micrometer gratings are generated on polycarbonate films spin-coated onto silver-gold bimetal layers by interference lithography (IL) applying the fourth harmonics of a Nd:YAG laser. These polymer gratings are used as prepatterned templates in order to deposit silica colloid spheres by spin-coating. It is shown that the conditions of periodic silica sphere-array formation along the template valleys are sufficiently large grating modulation depth, appropriate ratio of silica sphere diameter to grating period, and optimized speed of spinning. The periodic silica sphere arrays are illuminated by a homogeneous KrF excimer laser beam, and periodically arrayed sub-wavelength holes are drilled into bimetal films via colloid sphere lithography (CSL). The characteristic dimensions of the resulted plasmonic structures are defined by the polymer grating period and by the silica colloid sphere diameter. Attenuated total reflection spectroscopy is performed exciting plasmons on different metal-dielectric interfacial structures by the second harmonic of a continuous Nd:YAG laser. The polar and azimuthal angle dependent grating-coupling and scattering effects of the complex periodic structures on the resonance characteristic of plasmons is demonstrated.  相似文献   

3.
Femtosecond pulsed laser-induced periodic surface structure on GaN/sapphire is reported in this paper. It was found that the period of the laser-induced ripples was much dependent on the incident laser fluence. Through finely adjusting laser fluence and pulse number, uniform ripples could be formed on the sapphire surface. We attributed the formation of such periodic two-dimensional structures to optical interference of the incident laser light with scattered waves from a surface disturbance. Also, it was found that the GaN capping layer played a very important role in forming the periodic structures on the sapphire surface.  相似文献   

4.
We present periodic ripples and arrays of protrusions formed on the surface of silicon after irradiation by low-fluence linearly polarized femtosecond laser pulses. Laser-induced periodic surface structures (LIPSS) are observed for irradiation at center wavelengths of 800, ∼ 1300, and ∼ 2100 nm, with the structure periods somewhat less than the incident wavelengths in air. Additionally, we observe structures with spatial periods substantially less than the incident laser wavelengths. These sub-wavelength periodic structures form only when the photon energy is less than the silicon bandgap energy. We discuss a number of factors which may contribute to the generation of this surface morphology.  相似文献   

5.
In this work we present periodic surface structures generated by linearly polarized F2 laser light (157 nm) on polyethyleneterephthalate (PET). Atomic force microscopy was used to study the topological changes induced by the laser irradiation. The laser irradiation induces the formation of periodic ripple structures with a width of ca 130 nm and a height of about 15 nm in the fluence range 3.80-4.70 mJ/cm2 and the roughness of the polymer surface increases due to the presence of these periodic structures. Subsequently, the laser modified PET foils were coated with a 50 nm thick gold layer by sputtering. After Au deposition on the PET foils with ripple structure, the roughness of surface decreases in comparison to PET with ripples without Au coating. For 50 nm thick Au layers, the ripple structure is not directly transferred to the gold coating, but it has an obvious effect on the grain size of the coating. With considerably thinner Au layers, the ripple structures are smoothened but preserved.  相似文献   

6.
Localized plasmonic structures with the periodic ZnO nano-patterns are demonstrated to increase the sensing characteristics of plasmonic sensor. The ZnO nano-patterns with 30 and 50 nm thicknesses are formed on the Au thin film of 50 nm, which have the periodic nano-patterns of 300 nm. Localized plasmonic structures are optimized using the three-dimensional finite-difference time-domain method as a function of incident angle for the width and thickness of the ZnO nano-structures. Localized plasmonic structures with the periodic ZnO nano-holes are fabricated using the double exposure technique by laser interference lithography. The measured resonance angles of 47.5° and 54° are obtained in the localized plasmonic structures with the periodic ZnO nano-patterns of 30 and 50 nm thicknesses, respectively.  相似文献   

7.
In this paper, we find, for the first time, that optical absorptance of metals can be significantly enhanced by a new type of surface structures following femtosecond laser ablation, namely nanostructure-covered periodic surface structures. Especially, the effect of the nanostructure-covered periodic structures on optical absorptance of metals has a clear polarization dependence that suggests a more controllable way to modify material optical properties with femtosecond laser processing. PACS 81.40.Wx; 78.20.Ci; 81.07.-b; 61.80.-x  相似文献   

8.
Self-organized periodic surface structures on ZnO have been observed after multiple linearly polarized femtosecond laser pulse irradiation. The observed self-organized structures are attributed to the second harmonics in the sample surface excited by the incident laser. The grating orientation could be adjusted by the laser polarization direction. We also find that fluences play an important role in the formation of self-organized nanostructures.  相似文献   

9.
报道了三光束飞秒激光干涉在GaP和ZnSe晶体表面诱导二维复合纳米-微米周期结构.改变三束光的偏振组合方式,可以得到不同的纳米-微米复合结构.理论计算了相应偏振条件下光场强度分布、椭偏度分布和偏振方向分布.实验和理论计算结果表明,烧蚀斑上的微米长周期结构是由三光束干涉的强度花样决定,短周期纳米结构是由光场的偏振干涉花样决定.这些研究在纳米材料制备、超高密度光存储以及材料特性周期性调制等方面有很大的应用前景.  相似文献   

10.
The formation of periodic surface structures by ultrashort laser pulses was observed experimentally and explained theoretically. The experiments were performed on graphite with picosecond laser pulses. The spatial period of the structures is of the order of the wavelength of the incident radiation, and the orientation of the structures is correlated with the direction of polarization of the light. The key point of the theoretical model proposed is resonance excitation of surface electromagnetic waves, which under conditions such that the temperature of the electronic subsystem is decoupled from the temperature of the crystal lattice causes a “temperature grating” to be written on the flat solid surface of the sample while the laser pulse is being applied on account of the temperature dependence of the surface impedance. The formation of a periodic surface profile from the temperature grating occurs by the volume expansion of a melted layer near the surface of the material. For typical values of the surface tension and viscosity for metals, there is not enough time for the periodic profile to be resorbed before the liquid layer solidifies. The formation of periodic surface structures is delayed in time relative to the laser pulse. Zh. éksp. Teor. Fiz. 115, 675–688 (February 1999)  相似文献   

11.
In this work, we studied a method of laser-induced coloration of metals, where small-scale spatially periodic structures play a key role in the process of color formation. The formation of such structures on a surface of AISI 304 stainless steel was demonstrated for the 1.06 µm fiber laser with nanosecond duration of pulses and random (elliptical) polarization. The color of the surface depends on the period, height and orientation of periodic surface structures. Adjustment of the polarization of the laser radiation or change of laser incidence angle can be used to control the orientation of the structures. The formation of markings that change their color under the different viewing angles becomes possible. The potential application of the method is metal product protection against falsification.  相似文献   

12.
The topography of indium tin oxide (ITO) films with incorporated silver nanoparticles and irradiated by single pulses of 18 ns Nd:YAG laser has been investigated. The study was carried out with two Ag/ITO films having resistances of 50 Ω/ITO sheet and 4 Ω/ITO sheet. The periodic structures in both samples were created after the laser treatment. The photo-induced periodic structures have a different character while the sheet resistance plays a major role in the growth process of these structures. The results of optical and non-linear optical investigations lead us to the conclusion that the temporary polarization of samples during laser treatment is responsible for the shape of periodic structures.  相似文献   

13.
The self-formation of periodic subwavelength ripples by linear polarized femtosecond laser scanning planar and non-planar tungsten targets on the employed laser wavelength, scanning speed, and energy fluence are examined systematically. The results show that, for a certain laser wavelength, the scanning conditions have no obvious effect to the morphological features of grating structures in the threshold range of laser fluence. The spatial structured period of gratings can be self-consistently interpreted by recently presented physical model of surface two-plasmon resonance. The subwavelength structures on cylindrical surface would be a good method to realize unique surface functions on complex surface of micro-devices.  相似文献   

14.
A model is proposed to explain the formation of periodic structures produced on solid surfaces by laser radiation. The model gives rise to a system of two linear integrodifferential equations with difference kernels for temperature correction due to the specific absorption of electromagnetic energy at a certain solid surface profile and at a surface profile formed due to heat expansion resulting from temperature correction. The solution of this system reveals, that, first, periodic structures are formed as a result of the propagation of periodic profiles generated from a certain original non-periodic profile over the body surface. Second, the amplitudes of these waves grow with time only for a laser density exceeding certain critical value, i.e. the formation of periodic structures is a threshold effect relative to the laser density.  相似文献   

15.
Experimental results on the formation of small-scale periodic nanostructures during ablation of solids by pico- and femtosecond laser pulses are presented. The period of these nanostructures is in the range of 50 to 100 nm, and they may coexist with known periodic nanostructures, whose period and orientation is determined by the laser wavelength and amounts to several hundreds of nanometers. The formation of high-frequency periodic structures with a period of about 100nm is theoretically analyzed by joint numerical solution of the heat conduction problem and Navier?Stokes equation. It is shown that their orientation is determined by the melt bath geometry.  相似文献   

16.
Specific features of the preparation and application of photonic and phononic crystals containing two-dimensional periodic domain structures are considered. Particular attention is given to the formation of two-dimensional periodic domain structures in oxide ferroelectrics using strongly focused laser beams. Specific features of the nonlinear properties of such two-dimensional structures during the propagation of optical and acoustic beams through them are described.  相似文献   

17.
李志明  王玺  聂劲松 《物理学报》2017,66(10):105201-105201
基于Sipe-Drude模型和表面等离子体激元(SPP)的干涉理论分别对单脉冲飞秒激光诱导硅表面形成低频率周期性波纹进行分析研究.探究了波长800 nm、脉宽150 fs的单个飞秒激光烧蚀硅造成不同激发水平下波纹形貌的变化,考虑到材料的光学性质变化(由Drude模型得到的介电常数变化),引入包含双温方程的电子数密度模型.计算结果表明,Sipe-Drude和SPP理论都适用于分析和解释高激发态下周期性波纹,但Sipe-Drude理论更适合分析更为广泛的周期性波纹结构.同时,波纹延伸方向总是垂直于入射激光偏振方向,其空间周期略小于激光波长,并受到入射激光通量的影响.在激光通量为0.38 J/cm~2时,波纹周期达到最小值.另外,还得到了不同入射角度的波纹周期变化情况,并在不同偏振态下随入射角度增大时波纹周期呈现相反的变化趋势.该研究对于理解飞秒激光造成硅表面形成周期结构及其在加工硅材料领域具有重要参考意义.  相似文献   

18.
冉玲苓  曲士良  郭忠义 《中国物理 B》2010,19(3):34204-034204
This paper investigates the generation of self-organized surface structures on amorphous alloys by vortex femtosecond laser pulses. The scanning electron microscope characterizations show that the as-formed structures are periodic ripples, aperiodic ripples, and `coral-like' structures. Optimal conditions for forming these surface structures are determined in terms of pulses number at a given pulse energy. The applicable mechanism is suggested to interpret the formation and evolution of the `coral-like' structures.  相似文献   

19.
Atomic force microscopy is used to examine the topography of submicron periodic structures formed on the surfaces of synthetic polycrystalline diamond and polyimide films. The films are deposited on fused quartz substrates by four-wave interference modification using a pulsed 308-nm UV XeCl excimer laser. It is demonstrated that a two-dimensional periodic relief with a submicron period can be formed on the diamond surface directly by laser evaporation in the absence of a photoresist. Depending on the exposure, two mechanisms of polyimide film modification are observed. At exposures less than 100 mJ/cm2, the relief is formed due to swelling at the positions of interference maxima. At exposures greater than 100 mJ/cm2, holes are formed in the films. A periodic relief on the fused quartz surface is formed by using a UV photoresist exposed to pulsed interference laser radiation and subsequent Ar ion etching.  相似文献   

20.
The modes of laser lithography fabrication of three-dimensional submicrometer structures have been studied. The method is based on the effect of threshold two-photon polymerization of a photosensitive material at the laser beam focus. To determine the lithograph workspace in the coordinates “laser power-speed of the sample displacement with respect to the laser focus,” a series of photonic crystals with the woodpile structure is prepared. Two methods for fabricating three-dimensional structures, i.e., raster scanning and vector graphics (or the vector method) are analyzed in detail. The advantages of the vector method for fabricating periodic structures are demonstrated using crystals of inverted yablonovite as an example. The prepared samples are studied by scanning electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号