共查询到19条相似文献,搜索用时 109 毫秒
1.
2.
影响无网格方法求解精度的因素分析 总被引:10,自引:1,他引:10
基于移动最小二乘法的无网格方法的计算精度除受到节点的分布密度和基底函数的阶次影响外,还受到其它因素的影响,其中权函数的选取、权函数影响域的大小及位移边界条件的引入对计算精度影响较大。本文分析了几种常用权函数在数值计算时的特点,包括计算精度、收敛情况、计算效率等,同时分析了影响域大小及边界条件的引入对计算精度的影响。通过分析给出了确定权函数及其影响域大小的方法。当受约束的自由度较多时,通过配点法引入位移边界条件会引起计算结果的振荡,通过施加稳定项可以消除振荡现象,通过对带孔方板的受力分析证明了其可行性。应用以上结论对J23—10曲柄压力机机身进行了受力分析,应力集中部位的计算结果得到了较高的精度。 相似文献
3.
含有启动压力梯度的渗流问题及其无网格解法 总被引:6,自引:2,他引:6
针对两种典型的涉及启动压力梯度的渗流问题,给出了无量纲化的渗流控制方程、初始条件和边界条件,并使用无网格方法进行数值模拟。计算结果使用Gringarten—Bourdet图版进行井底压力分析,给出了一种计算动边界位置的方法,并详细讨论了动边界变化情况。 相似文献
4.
用无网格局部Petrov-Galerkin法分析非线性地基梁 总被引:3,自引:1,他引:2
利用无网格局部Petroy-Galerkin法求解了非线性地基梁.在Petroy-Galerkin方法中,采用移动最小二乘(MLS)近似函数作为场变量挠度的试函数并取移动最小二乘近似函数中的权函数作为近似场函数的加权函数,采用罚因子法施加本质边界条件.文末给出了两个计算实例,算例的结果表明,Petrov-Galerkin法不仅能成功地分析线性地基梁,而且也适用于求解非线性地基梁,在分析非线性地基梁时具有收敛快,稳定性好的优点. 相似文献
5.
无网格近似函数具有高度光滑性,能够很好的逼近曲壳表面及其位移场。无网格局部Petrov-Galerkin方法不论插值还是离散都不需要单元,是一种真正的无网格方法。本文基于无网格局部Petrov-Galerkin方法的基本原理,采用移动最小二乘插值,利用控制微分方程弱形式,建立了Mindlin壳结构的无网格局部Petrov-Galerkin分析方法,用屋顶壳、受夹圆柱壳、几何非线性圆柱壳作为计算实例分析了求解精度、收敛性和稳定性,并与精确解和有限元计算结果进行了对比,表明该方法计算精度高及收敛性好。 相似文献
6.
无网格方法求解稳定渗流问题 总被引:16,自引:3,他引:13
使用无单元伽辽金(EFG)方法求解圆形油藏中心井和矩形油藏裂缝井两种稳定渗流模型。在中心井模型计算过程中,观察到采用对数等分布置节点是最有效的;计算结果与理论解和有限元解相比较,表明无网格方法是一种比有限元更为精确的方法。裂缝井模型通过在初始节点基础之上加密节点,获得了比较好的结果,并且给出了等压力曲线图。 相似文献
7.
无网格方法的研究进展与展望 总被引:5,自引:0,他引:5
目前正在发展的无网格方法采用基于点的近似,可以彻底或部分地消除网格,因此在处理不连续和大变形问题时可以完全抛开网格重构.无网格方法是目前科学和工程计算方法研究的热点,也是科学和工程计算发展的趋势.本文首先简单地阐述了无网格方法,然后详细叙述了目前提出的各种无网格方法的研究进展,最后对目前无网格方法存在的问题进行了探讨,提出了今后的研究方向. 相似文献
8.
9.
10.
利用全局薄板样条径向基配点法分析了功能梯度梁的弯曲问题,径向基函数的形状参数对近似精度有很大的影响,而薄板样条径向基函数的形状参数选取比其他径向基函数要容易. 利用高阶剪切变形理论推导了控制微分方程,将该文的计算结果与已有参考文献中的结果进行了对比,以验证该文方法的精度. 相似文献
11.
无网格法是求解微分方程定解问题的一种新数值方法.移动最小二乘近似只要求近似函数在各节点处的误差的平方和最小,对近似函数导数的误差没有任何约束.而广义移动最小二乘近似要求近似函数及其导数在所有节点处的误差的平方和最小.为了降低计算工作量,本文构造了要求近似函数在全部节点处和任意阶导数在部分节点处误差的平方和最小的改进广义移动最小二乘近似.数值计算显示本文提供的方法关于函数值和各阶导数值都具有很高的精度. 相似文献
12.
一种新的数值方法——无网格伽辽金法(EFGM) 总被引:70,自引:8,他引:70
无网格伽辽金法(EFGM)是近几年发展起来的与有限元相似的一种数值算法,它采用移动的最小二乘法构造形函数,从能量泛函的弱变分形式中得到控制方程,并用拉氏乘子满足本征边界条件,从而得到偏微分方程的数值解中得到该法只需节点信息,不需将节点连成单元,此外,还有精度高,后处理方便等优点,本文介绍其基本原理及实现过程,并用算例表明,该法具有一定的发展前景。 相似文献
13.
一种改进的无单元方法 总被引:15,自引:1,他引:15
使用 1阶或 1阶以上最小滑动二乘法 ( MLS)形函数的无网格伽辽金法 ( EFGM) ,它们的主要缺点是形函数构造复杂、计算费用十分昂贵。本文提出了一种改进的无单元方法 ( IEFM) ,它通过采用 Shepard形函数 ( 0阶 MLS形函数 )对结点的覆盖位移函数加权求和来简化整体近似位移函数的构造 ,且能够避免 EFGM里求解结点形函数时矩阵的求逆及相乘计算。文中的数值算例表明 ,这种改进的 IEFM法收敛快、精度高 ,与标准的EFGM相比其计算时间得到了大幅度的减少 相似文献
14.
Thin structures are generally solved by the Finite Element Method (FEM), using plate or shell finite elements which have many
limitations in applications, such as numerical locking, edge effects, length scaling and the envergence problem. Recently,
by proposing a new approach to treating the nearly-singular integrals, Liu et al. developed a BEM to successfully solve thin
structures with the thickness-to-length ratios in the micro- or nano-scales. On the other hand, the meshless Regular Hybrid
Boundary Node Method (RHBNM), which is proposed by the current authors and based on a modified functional and the Moving Least-Square
(MLS) approximation, has very promising applications for engineering problems owing to its meshless nature and dimension-reduction
advantage, and not involving any singular or nearly-singular integrals. Test examples show that the RHBNM can also be applied
readily to thin structures with high accuracy without any modification. 相似文献
15.
Miao Yu Wang Yuanhan Jiang Heyang 《Acta Mechanica Solida Sinica》2005,18(4):307-315
The hybrid boundary node method (HBNM) is a promising method for solving boundary value problems with the hybrid displacement variational formulation and shape functions from the moving least squares(MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the latter. Following its application in solving potential problems, it is further developed and numerically implemented for 2D solids in this paper. The rigid movement method is employed to solve the hyper-singular integrations. Numerical examples for some 2D solids have been given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method are studied through numerical examples. 相似文献
16.
17.
The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results. 相似文献
18.
MESHLESS ANALYSIS FOR THREE-DIMENSIONAL ELASTICITY WITH SINGULAR HYBRID BOUNDARY NODE METHOD 总被引:6,自引:0,他引:6
The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and moving least squares (MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the later. The rigid movement method was employed to solve the hyper-singular integrations. The 'boundary layer effect', which is the main drawback of the original Hybrid BNM, was overcome by an adaptive integration scheme. The source points of the fundamental solution were arranged directly on the boundary. Thus the uncertain scale factor taken in the regular hybrid boundary node method (RHBNM) can be avoided. Numerical examples for some 3D elastic problems were given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method were studied through the numerical examples. 相似文献
19.
We present a grid‐free or meshless approximation called the kinetic meshless method (KMM), for the numerical solution of hyperbolic conservation laws that can be obtained by taking moments of a Boltzmann‐type transport equation. The meshless formulation requires the domain discretization to have very little topological information; a distribution of points in the domain together with local connectivity information is sufficient. For each node, the connectivity consists of a set of nearby nodes which are used to evaluate the spatial derivatives appearing in the conservation law. The derivatives are obtained using a modified form of the least‐squares approximation. The method is applied to the Euler equations for inviscid flow and results are presented for some 2‐D problems. The ability of the new scheme to accurately compute inviscid flows is clearly demonstrated, including good shock capturing ability. Comparisons with other grid‐free methods are made showing some advantages of the current approach. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献