首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sn9(4-) reacts with Pd(PPh3)4 in ethylenediamine/toluene solvent mixtures in the presence of 2,2,2-cryptand to give the Pd2@Sn18(4-) cluster as the K(2,2,2,-crypt)+ salt. The cluster is isostructural with Pd2@Ge18(4-) and has a nuclearity different from that of the Pt and Ni analogues, Ni2@Sn17(4-) and Pt2@Sn17(4-). The Pd2@Sn18(4-) ion has a deltahedral capsulelike structure with 40 cluster bonding electrons and is the largest free-standing polystannide characterized to date. Like Pt2@Sn17(4-), the Pd2@Sn18(4-) complex is highly dynamic in solution, showing a single (119)Sn NMR resonance indicative of an intramolecular liquidlike dynamic exchange. LDI-MS studies of the crystalline sample show extensive fragmentation and the formation of five gas-phase cluster series: Sn(x)- (1 < x < 12), PdSn(x-1) - (4 < x < 18), Pd 2Sn(x-2) - (6 < x < 21), Pd3Sn(x-3) - (8 < x < 21), and Pd 4Sn(x-4) - (13 < x < 21). The most abundant ion in the gas phase is the PdSn(10) - cluster, which presumably has an Sn(10) bicapped-square-antiprismatic structure with an endohedral Pd (e.g., Ni@Pb(10)(2-)).  相似文献   

2.
The icosahedral [M@Pb12]3− (M=Co( 1 ), Rh( 2 ), Ir( 3 )) cluster ions were prepared from K4Pb9 and Co(dppe)Cl2 (dppe=1,2-bis(diphenylphosphino)ethane)/[Rh(PPh3)3Cl]/[Ir(cod)Cl]2 (cod=1,5-cyclooctadiene), respectively, in the presence of 18-crown-6/ 2,2,2-cryptand in ethylenediamine/toluene solvent mixtures. The [K(2,2,2-cryptand)]+ salt of 1 and the [K(18-crown-6)]+ salt of 3 were characterized via X-ray crystallography; the ions 1 and 3 are isostructural and isoelectronic to the [Rh@Pb12]3− ( 2 ) ion as well as to the group 10 clusters [M′@Pb12]2− (M′=Ni, Pd, Pt). The ions are all 26-electron clusters with near perfect icosahedral Ih point symmetry. Clusters 1 – 3 show record downfield 207Pb NMR chemical shifts due to σ-aromaticity of the cluster framework. Calculated and observed 207Pb NMR chemical shifts and 207Pb–xM J-couplings (xM=59Co, 103Rh, 193Ir) are in excellent agreement and DFT analysis shows that the variations of 207Pb NMR chemical shifts for the [M@Pb12]2, 3− ions (M=Co, Rh, Ir, Ni, Pd, Pt) are mainly governed by the perpendicularly oriented σ11 component of the chemical shift anisotropy tensor. The laser desorption ionization time-of-flight (LDI-TOF) mass spectra contain the molecular ions as well as several new gas phase clusters derived from the parents. The DFT-minimized structures of these ions are described.  相似文献   

3.
The cluster [Ni@Pb10](2-), prepared from Pb9(4-) and Ni(COD)2, contains a new Zintl ion subunit, closo-Pb10(2-), centered by a Ni atom.  相似文献   

4.
Reaction of an ethylenediamine (en) solution of K(4)Pb(9) and 2,2,2-crypt (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) with a tetrahydrofuran (THF) solution of Mn(3)(Mes)(6) (Mes = 2,4,6-trimethylphenyl) yielded the anionic cluster [Mn@Pb(12)](3-). This species was observed in the positive and negative ion-mode electrospray mass-spectra of the crude reaction mixture. The crystalline samples obtained from such solutions allowed us to confirm the composition of the sample as [K(2,2,2-crypt)](3)[Mn@Pb(12)]·1.5en (1). Because of numerous issues related to crystal sample quality and crystallographic disorder a high-quality crystal structure solution could not be obtained. Despite this, however, the data collected permit us to draw reasonable conclusions about the charge and connectivity of the [Mn@Pb(12)](3-) cluster anion. Crystals of 1 were further characterized by elemental analysis and electron paramagnetic resonance (EPR). Density Functional Theory (DFT) calculations on such a system reveal a highly distorted endohedral cluster anion, consistent with the structural distortions observed by single crystal X-ray diffraction. The cluster anions are considerably expanded compared to the 36-electron closed-shell analogue [Ni@Pb(12)](2-) and, moreover, exhibit significant low-symmetry distortions from the idealized icosahedral (I(h)) geometry that is characteristic of related endohedral clusters. Our computations indicate that there is substantial transfer of electron density from the formally Mn(-I) center to the low-lying vacant orbitals of the [Pb(12)](2-) cage.  相似文献   

5.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

6.
Ethylenediamine (en) solutions of K(3)P(7) and 2,2,2-crypt (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) were reacted with the homoleptic group 11 complexes [M(nbe)(3)][SbF(6)] (M = Ag, Au; nbe = norbornene) yielding two novel cluster anions, [M(2)(HP(7))(2)](2-), both of which were isolated in low crystalline yields as [K(2,2,2-crypt)](2)[M(2)(HP(7))(2)] (M = Ag (1) and Au (2)). Optimization of the reaction conditions by incorporation of a proton source (ammonium tetraphenylborate) and the replacement of the light-sensitive nbe adducts of silver and gold with the chloride salts MCl (M = Ag, Au) was found to greatly increase the yield and purity in which 1 and 2 were isolated. Compounds 1 and 2 were characterized by single crystal X-ray diffraction, electrospray ionization mass-spectrometry (ESI- MS), elemental analysis, and (1)H and (31)P NMR spectroscopy. Density functional theory (DFT) calculations on the cluster anions were also conducted.  相似文献   

7.
Salt metathesis reactions between ethylenediamine (en) solutions of the K(3)E(7) (E = P, As) Zintl phases and post-transition metal halides (InCl(3), TlCl, SnI(2) and PbI(2)) have yielded a family of novel heteroatomic cluster anions, [In(E(7))(2)](3-), [TlE(7)](2-) and [E'E(15)](3-) (E' = Sn, Pb; E = P, As). Several of these new species have been characterized by single-crystal X-ray diffraction as salts of sequestered potassium cations in [K(2,2,2-crypt)](3)[In(P(7))(2)]·3.5py (1), [K(2,2,2-crypt)](2)[TlP(7)]·py (3), [K(18-crown-6)](2)[TlAs(7)] (4b), [K(2,2,2-crypt)](3)[E'P(15)]·en (E' = Sn (5), Pb (6)) and [K(2,2,2-crypt)](3)[SnAs(15)]·2en (7). The presence of all of the cluster anions in solution was confirmed by electrospray mass-spectrometry and by (1)H and (31)P{(1)H} NMR spectroscopy when pertinent.  相似文献   

8.
[Sn(9)Pt(2)(PPh(3))](2)(-) (2) was prepared from Pt(PPh(3))(4), K(4)Sn(9), and 2,2,2-cryptand in en/toluene solvent mixtures. The [K(2,2,2-cryptand)](+) salt is very air and moisture sensitive and has been characterized by ESI-MS, variable-temperature (119)Sn, (31)P, and (195)Pt NMR and single-crystal X-ray diffraction studies. The structure of 2 comprises an elongated tricapped Sn(9) trigonal prism with a capping PtPPh(3), an interstitial Pt atom, a hypercloso electron count (10 vertex, 20 electron) and C(3)(v)() point symmetry. Hydrogenation trapping experiments and deuterium labeling studies showed that the formation of 2 involves a double C-H activation of solvent molecules (en or DMSO) with the elimination of H(2) gas. The ESI-MS analysis of 2 showed the K[Sn(9)Pt(2)(PPh(3))](1)(-) parent ion, an oxidized [Sn(9)Pt(2)(PPh(3))](1)(-) ion, and the protonated binary cluster anion [HSn(9)Pt(2)](1)(-). 2 is highly fluxional in solution giving rise to a single time-averaged (119)Sn NMR signal for all nine Sn atoms but the Pt atoms remain distinct. The exchange is intramolecular and is consistent with a rigid, linear Pt-Pt-PPh(3) rod embedded in a liquidlike Sn(9) matrix. [Sn(9)Ni(2)(CO)](3)(-) (3) was prepared from Ni(CO)(2)(PPh(3))(2), K(4)Sn(9), and 2,2,2-cryptand in en/toluene solvent mixtures. The [K(2,2,2-cryptand)](+) salt is very air and moisture sensitive, is paramagnetic, and has been characterized by ESI-MS, EPR, and single-crystal X-ray diffraction. Complex 3 is a 10-vertex 21-electron polyhedron, a slightly distorted closo-Sn(9)Ni cluster with an additional interstitial Ni atom and overall C(4)(v)() point symmetry. The EPR spectrum showed a five-line pattern due to 4.8-G hyperfine interactions involving all nine tin atoms. The ESI-MS analysis showed weak signals for the potassium complex [K(2)Sn(9)Ni(2)(CO)](1-) and the ligand-free binary ions [K(2)Sn(9)Ni(2)](1)(-), [KSn(9)Ni(2)](1)(-), and [HSn(9)Ni(2)](1)(-).  相似文献   

9.
K3Sb7 and Ni(COD)2 react in the presence of 2,2,2-cryptand in ethylenediamine solutions ( approximately 1:8 Ni/Sb molar ratio) to give dark-brown crystals of the paramagnetic cluster anion [Ni5Sb17]4- as the [K(2,2,2-crypt)]+ salt. The cluster has a Ni(cyclo-Ni4Sb4) ring unit that sits inside a Sb13 bowl. The structure is similar to that of the previously reported [Pd7As16]4- ion containing a Pd(cyclo-Pd4As4) ring unit that sits inside a Pd2As12 bowl. Density functional theory and bond valence analyses suggest delocalized charge distributions and intermetallic-like properties.  相似文献   

10.
Pd(PCy(3))(2) (Cy = cyclohexyl) reacts with As(7)(3-) in en/tol solvent mixtures to give Pd(2)As(14)(4-) (2) and Pd(7)As(16)(4-) (4) as the [K(2,2,2-crypt)](+) salts. The anions were characterized by EDX, ESI-MS, and single-crystal X-ray diffraction. Anion 2 formally contains two norbornadiene-like As(7)(5-) groups bound to square-planar Pd(III) centers linked by a Pd-Pd bond (d(Pd)(-)(Pd) = 2.7144(6) A). Anion 4 has a highly distorted capped trigonal prismatic Pd(7) core stabilized by 2 As(5)(1-), 2 As(2)(2-), and 2 As(3-) anions. The 6 Pd(I) ions are in distorted 5-coordinate environments whereas the lone Pd(II) ion is square planar. Complexes 2 and 4 are rare examples of organic-free, homoleptic transition metal anions containing group 15 elements, and they represent an emerging class of charged "molecular alloys".  相似文献   

11.
K(4)Sn(9) dissolves in ethylenediamine (en) to give equilibrium mixtures of the diamagnetic HSn(9)(3-) ion along with K(x)Sn(9)((4-x)-) ion pairs, where x = 0, 1, 2, 3. The HSn(9)(3-) cluster is formed from the deprotonation of the en solvent and is the conjugate acid of Sn(9)(4-). DFT studies show that the structure is quite similar to the known isoelectronic RSn(9)(3-) ions (e.g., R = i-Pr). The hydrogen atom of HSn(9)(3-) (δ = 6.18 ppm) rapidly migrates among all nine Sn atoms in an intramolecular fashion; the Sn(9) core is also highly dynamic on the NMR time scale. The HSn(9)(3-) cluster reacts with Ni(cod)(2) to give the Ni@HSn(9)(3-) ion containing a hydridic hydrogen (δ = -28.3 ppm) that also scrambles across the Sn(9) cluster. The Sn(9)(4-) ion competes effectively with 2,2,2-crypt for binding K(+) in en solutions, and the pK(a) of HSn(9)(3-) is similar to that of en (i.e., Sn(9)(4-) is a very strong Br?nsted base with a pK(b) comparable to that of the NH(2)CH(2)CH(2)NH(-) anion). Competition studies show that the HSn(9)(3-) ? Sn(9)(4-) + H(+) equilibrium is fully reversible. The HSn(9)(3-) anion is present in significant concentrations in en solutions containing 2,2,2-crypt, yet it has gone undetected for over 30 years.  相似文献   

12.
Five kinds of (1:1), (1:3), and (2:1) salts of 3-[4-(diethylmethylammonio)phenyl]-1,5-diphenyl-6-oxoverdazyl radical cation [V](+) with M(dmit)(2) anions (M = Ni, Zn, Pd, and Pt, dmit = 1,3-dithiol-2-thione-4,5-dithiolate) ([V](+)[Ni(dmit)(2)](-) (1), [V](+)[Ni(dmit)(2)](3)(-) (2), [V](+)(2)[Zn(dmit)(2)](2-) (3), [V](+)(2)[Pd(dmit)(2)](2-) (4), and [V](+)(2)[Pt(dmit)(2)](2-) (5)) and an iodide salt of [V](+) ([V](+)[I](-) (6)) have been prepared, and the magnetic susceptibilities (chi(M) values) have been measured between 1.8 and 300 K. The chi(M) of the (1:1) Ni salt (1) can be well reproduced by the sum of the contributions from (i) a Curie-Weiss system with a Curie constant (C) of 0.376 K emu/mol and a negative Weiss constant (theta) of -1.5 K and (ii) the one-dimensional Heisenberg antiferromagnetic alternating chain system with 2J(A-B)/k(B) = -274 K (alternation parameter alpha = J(A-C)/J(A-B) = 0.2). The chi(M) of the (1:3) Ni salt (2) can be well explained by the two-term contributions from (i) the Curie-Weiss system with C = 0.376 K emu/mol and theta = -5.0 K and (ii) the dimer system with 2J/k(B) = -258 K. The magnetic properties of 1 and 2 were discussed based on the results obtained by crystal structure analysis and ESR measurements of 1 and 2. The chi(M) values of the (2:1) Zn, Pd, Pt salts 3, 4, and 5 and [V](+)[I](-) salt 6 follow the Curie-Weiss law with C = 0.723, 0.713, 0.712, and 0.342 K emu/mol and theta = -2.8, -3.1, -2.6, and +0.02 K, respectively, indicating that only the spins of the verdazyl radical cation contribute to the magnetic property of these salts. The salts 1, 3, and 5 are insulators. On the other hand, the conductivity (sigma) of the Ni salt 2 and Pd salt 4 at 20 degrees C was sigma = 8.9 x 10(-2) and 1.3 x 10(-4) S cm(-)(1) with an activation energy E(A) = 0.11 and 0.40 eV, respectively. The salts 2 and 4 are new molecular magnetic semiconductors.  相似文献   

13.
The synthesis and structure, as well as the chemical and electrochemical characterisation of two new nu(3)-octahedral bimetallic clusters with the general [Ni(44-x)M(x)(CO)(48)](6-) (M = Pd, x = 8; M = Pt, x = 9) formula is reported. The [Ni(35)Pt(9)(CO)(48)](6-) cluster was obtained in reasonable yields (56 % based on Pt) by reaction of [Ni(6)(CO)(12)](2-) with 1.1 equivalents of Pt(II) complexes, in ethyl acetate or THF as the solvent. The [Ni(36)Pd(8)(CO)(48)](6-) cluster was obtained from the related reaction with Pd(II) salts in THF, and was isolated only in low yields (5-10 % based on Pd), mainly because of insufficient differential solubility of its salts. The unit cell of the [NBu(4)](6)[Ni(35)Pt(9)(CO)(48)] salt contains a substitutionally Ni-Pt disordered [Ni(24)(Ni(14-x)Pt(x))Pt(6)(CO)(48)](6-) (x = 3) hexaanion. A combination of crystal and molecular disorder is necessary to explain the disordering observed for the Ni/Pt sites. The unit cell of the corresponding [Ni(36)Pd(8)(CO)(48)](6-) salt contains two independent [Ni(30)(Ni(8-x)Pd(x))Pd(6)(CO)(48)](6-) (x = 2) hexaanions. The two display similar substitutional Ni-Pd disorder, which probably arises only from crystal disorder. The structure of [Ni(36)Pd(8)(CO)(48)](6-) establishes the first similarity between the chemistry of Ni-Pd and Ni-Pt carbonyl clusters. A comparison of the chemical and electrochemical properties of [Ni(35)Pt(9)(CO)(48)](6-) with those of the related [Ni(38)Pt(6)(CO)(48)](6-) cluster shows that surface colouring of the latter with Pt atoms decreases redox as well as protonation propensity of the cluster. In contrast, substitution of all internal Pt and two surface Ni with Pd atoms preserves the protonation behaviour and is only detrimental with respect to its redox aptitude. A qualitative rationalisation of the different surface-site selectivity of Pt and Pd, based on distinctive interplays of M--M and M--CO bond energies, is suggested.  相似文献   

14.
The new anionic complexes [K(18-crown-6)][WH5(PMe2Ph)3], [K(1,10-diaza-18-crown-6)][WH5(PMe2Ph)3], [K(2,2,2-crypt)][ReH4(PMePh2)3], and [K(1,10-diaza-18-crown-6)][ReH4(PMePh2)3] were prepared by reaction of KH/crown or KH/crypt with the appropriate neutral polyhydride WH6(PMe2Ph)3 or ReH5(PMePh2)3. The rate of deprotonation of the rhenium hydride in THF is much greater for the reaction involving crypt compared with that of crown. The structure of [ReH4(PMePh2)3]- is distorted pentagonal bipyramidal as determined by an X-ray diffraction study of the crypt salt. No hydridic-protonic M-H...HN bonding is detected between the hydrides of the anionic hydrides and the amino hydrogens of the cations [K(1,10-diaza-18-crown-6)]+ suggesting that stronger M-H...K interactions are present. Acid dissociation constants Ka of polyhydride complexes in THF, approximately corrected for ion pairing, are determined by NMR in order to better understand the periodic trends of metal hydrides. The pKalphaTHF of (WH6(PMe2Ph)3/[WH5(PMe2Ph)3]-) is 42+/-4 according to the equilibrium set up by reacting WH6(PMe2Ph)3 with [K(2,2,2-crypt)][ReH6(PCy3)2]. The pKalphaTHF for ReH5(PMePh2)3 can be estimated as greater than the pKalphaTHF of 38 for HNPh2 and less than the pKalphaTHF of 41 for ReH7(PCy3)2. Reaction of the phosphazene base P4-tBu with ReH7(PCy3)2 gave an equilibrium with [HP4-tBu]+[ReH6(PCy3)2]- whereas reaction with WH6(PMe2Ph)3 gave an equilibrium with [HP4-tBu]+[WH5(PMe2Ph)3]-. From these and a related equilibrium, the pKalphaTHF of [HP4-tBu]+ is found to be 40+/-4. In general, neutral complexes MHx(PR3)n (M=W, Re, Ru, Os, Ir; n=3, 2) studied to date have pKalphaTHF values from 30 to 44 on going from phenyl-substituted to alkyl-substituted phosphine ligands whereas MHx(PR3)n+ (M=Re, Fe, Ru, Os, Co, Rh, Ni, Pd, Pt; n=4, 3), including diphosphine ligands ((PR3)2=PR2-PR2), have values from 12 to 23. From the equilibrium established from the reaction of [HP2-tBu][BPh4] and [K(2,2,2-crypt)][OP(OEt)2NPh], [HP2-tBu]+ was calculated to have a pKalphaTHF of 30+/-4. The equilibrium constant for the similar deprotonation reaction with [K(18-crown-6)][{ReH2(PMePh2)2}2(mu-H)3] confirmed this value.  相似文献   

15.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   

16.
Deltahedral nine-atom clusters of silicon, Si(9)(2-), were synthesized by mild oxidation of a liquid ammonia solution of K(12)Si(17) with Ph(3)GeCl in the presence of 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) or 2,2,2-crypt (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane). The clusters were structurally characterized in [K(18-crown-6)](2)Si(9).C(5)H(5)N (yellow; orthorhombic, Pnma; a = 14.013(1), b = 18.108 (1), c = 18.320 (1) A; Z = 4) crystallized from a pyridine solution of the product of the aforementioned reaction in liquid ammonia. Si(9)(2-) is the first unequivocally characterized nine-atom cluster of group 14 with a charge of 2-. In addition to pyridine, the product from the reaction in liquid ammonia is also soluble in DMF, and the Si(9)(2-) clusters were characterized by mass spectrometry in such a solution. The more reduced clusters Si(9)(3-) have also been crystallized from pyridine solution. Cyclic voltammetry in both pyridine and DMF solutions clearly shows the Si(9)(2-)/Si(9)(3-) redox couple as one-electron reversible process. The structural similarities and differences between Si(9)(3-) and Si(9)(2-) are discussed herein.  相似文献   

17.
Reactions of nine-atom deltahedral clusters (Zintl ions) of germanium, Ge9n- (n = 2, 3, 4), with alkyl chlorides, RCl (R = tBu, nBu, sBu, tAm), yielded the corresponding dialkylated dimers of Ge9 clusters [R-Ge9-Ge9-R]4-. The tBu derivative with [K(2,2,2-crypt)]+ countercations was characterized in the solid state by single-crystal X-ray diffraction as [K(2,2,2-crypt)]4[tBu-Ge9-Ge9-tBu].7en (monoclinic, C2/c, a = 35.0914(10) A, b = 24.8161(6) A, and c = 16.8782(5) A, beta = 94.0136(17) degrees , V = 14662.0(7) A3, and Z = 4) and in solution by 1H and 13C NMR. All species were also characterized in solution by electrospray mass spectrometry in the negative-ion mode. These are the first main group deltahedral clusters functionalized with purely organic substituents.  相似文献   

18.
The title anion was synthesized by a reaction of nido-Ge(9)(4-), made from K(4)Ge(9) dissolved in ethylenediamine and 2,2,2-crypt(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), with BiPh(3). It was structurally characterized in (K-2,2,2-crypt)(2)[Ge(9)(BiPh(2))(2)].en which was crystallized from the solution. The anion is a monocapped square antiprism of Ge(9) with two diphenylbismuth ligands exo-bonded to opposite vertexes of the open face of the cluster. This is the first example where covalently exo-bonded ligands are attached to a deltahedral cluster that can exist without them as well.  相似文献   

19.
[K(2,2,2-crypt]2HP11 has been prepared from the reaction of K3P11 with the mixed ethylenediamine/2,2,2-crypt solution. The crystal structure was determined by singlecrystal X-ray diffraction. The crystal is of tdgonal system, space group P^-3c1 with a = 12.068(2), b = 12.068(2), c = 22.319(6)A, V = 2815.0(10)A^3, Dc = 1.384 g/cm^3, C36h73K2N4O12P11, Mr = 1172.85, F(000) = 1232,μ = 0.536 mm^-1, Z= 2, R = 0.0678 and wR = 0.2211 for 1763 observed reflections (I 〉 2σ(I)). In this compound, the P11 cluster has ideal 32-D3 symmetry, and the three-fold axis, corresponds to the crystallographic c axis. The (HP11)^2- anions are stable due to the completely sequestered alkali metal cations through only ion-ion interactions.  相似文献   

20.
Reactions of ethylenediamine solutions of K4Bi5 with Ni(PPh3)2(CO)2 yielded four novel hetero-atomic Bi/Ni deltahedral clusters. Three of them, the 7-atom pentagonal bipyramidal [Bi3Ni4(CO)6]3-, the 8-atom dodecahedral [Bi4Ni4(CO)6]2-, and the Ni-centered or empty 12-atom icosahedral [Nix@[Bi6Ni6(CO)8]4-, are closo-species according to both electron count and shape. The centered icosahedral cluster resembles packing in intermetallic compounds and belongs to the emerging class of intermetalloid clusters. The shape of the fourth cluster, [Bi3Ni6(CO)9]3-, can be derived from the icosahedral Ni-centered [Ni@[Bi6Ni6(CO)8]4- by removal of three Bi- and one Ni-atoms of two neighboring triangular faces. The clusters were structurally characterized by single-crystal X-ray diffraction in compounds with potassium cations sequestered by 2,2,2-crypt or 18-crown-6 ether. They were also characterized in solution by electrospray mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号