首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The work of the present author and his coauthors over the past years gives evidence that it may be useful to regard each topological space as a kind of enriched category, by interpreting the convergence relation xx between ultrafilters and points of a topological space X as arrows in X. Naturally, this point of view opens the door to the use of concepts and ideas from enriched Category Theory for the investigation of topological spaces. Topological theories introduced by the author provide a convenient general setting for appropriately transferring these concepts and ideas to the world of topological spaces and some other geometric objects such as approach spaces. Using tools like adjunction and the Yoneda lemma, we show that the cocomplete spaces are precisely the injective spaces, and they are algebras for a suitable monad on . This way we obtain enriched versions of known results about injective topological spaces and continuous lattices.  相似文献   

2.
In the context of categorical topology, more precisely that of T-categories (Hofmann, 2007 [8]), we define the notion of T-colimit as a particular colimit in a V-category. A complete and cocomplete V-category in which limits distribute over T-colimits, is to be thought of as the generalisation of a (co-)frame to this categorical level. We explain some ideas on a T-categorical version of “Stone duality”, and show that Cauchy completeness of a T-category is precisely its sobriety.  相似文献   

3.
A weak selection on an infinite set X   is a function σ:[X]2→Xσ:[X]2X such that σ({x,y})∈{x,y}σ({x,y}){x,y} for each {x,y}∈[X]2{x,y}[X]2. A weak selection on a space is said to be continuous if it is a continuous function with respect to the Vietoris topology on [X]2[X]2 and the topology on X  . We study some topological consequences from the existence of a continuous weak selection on the product X×YX×Y for the following particular cases:
(i)
Both X and Y are spaces with one non-isolated point.  相似文献   

4.
A topological space X is compact iff the projection π:X×YY is closed for any space Y. Taking this as a definition and then asking that π maps α-closed subspaces of X×Y onto β-closed subspaces of Y, for different closures α and β, extends the notion of compactness to include also examples of “asymmetric compactness” pursued in the article.Categorical closure operators and a so-called “functional approach to general topology” are employed to define and prove fundamental properties of compact objects and proper maps in this generalised setting.  相似文献   

5.
In this article we investigate which compact spaces remain compact under countably closed forcing. We prove that, assuming the Continuum Hypothesis, the natural generalizations to ω1ω1-sequences of the selection principle and topological game versions of the Rothberger property are not equivalent, even for compact spaces. We also show that Tall and Usuba?s “11-Borel Conjecture” is equiconsistent with the existence of an inaccessible cardinal.  相似文献   

6.
《Quaestiones Mathematicae》2013,36(3):323-337
Abstract

It is shown that the category CS of closure spaces is a topological category. For each epireflective subcategory A of a topological category X a functor F A :XX is defined and used to extend to the general case of topological categories some results given in [4], [5] and [10] for epireflective subcategories of the category Top of topological spaces.  相似文献   

7.
In previous papers, the notions of “closedness” and “strong closedness” in set-based topological categories were introduced. In this paper, we give the characterization of closed and strongly closed subobjects of an object in the category Prord of preordered sets and show that they form appropriate closure operators which enjoy the basic properties like idempotency (weak) hereditariness, and productivity.We investigate the relationships between these closure operators and the well-known ones, the up- and down-closures. As a consequence, we characterize each of T0, T1, and T2 preordered sets and show that each of the full subcategories of each of T0, T1, T2 preordered sets is quotient-reflective in Prord. Furthermore, we give the characterization of each of pre-Hausdorff preordered sets and zero-dimensional preordered sets, and show that there is an isomorphism of the full subcategory of zero-dimensional preordered sets and the full subcategory of pre-Hausdorff preordered sets. Finally, we show that both of these subcategories are bireflective in Prord.  相似文献   

8.
Let S(Gσ)S(Gσ) be the skew adjacency matrix of the oriented graph GσGσ of order n   and λ1,λ2,…,λnλ1,λ2,,λn be all eigenvalues of S(Gσ)S(Gσ). The skew spectral radius ρs(Gσ)ρs(Gσ) of GσGσ is defined as max{|λ1|,|λ2|,…,|λn|}max{|λ1|,|λ2|,,|λn|}. In this paper, we investigate oriented graphs whose skew spectral radii do not exceed 2.  相似文献   

9.
10.
The connected Vietoris powerlocale is defined as a strong monad Vc on the category of locales. VcX is a sublocale of Johnstone's Vietoris powerlocale VX, a localic analogue of the Vietoris hyperspace, and its points correspond to the weakly semifitted sublocales of X that are “strongly connected”. A product map ×:VcX×VcYVc(X×Y) shows that the product of two strongly connected sublocales is strongly connected. If X is locally connected then VcX is overt. For the localic completion of a generalized metric space Y, the points of are certain Cauchy filters of formal balls for the finite power set FY with respect to a Vietoris metric.Application to the point-free real line R gives a choice-free constructive version of the Intermediate Value Theorem and Rolle's Theorem.The work is topos-valid (assuming natural numbers object). Vc is a geometric construction.  相似文献   

11.
The classic Cayley identity states that
det(∂)(detX)s=s(s+1)?(s+n−1)(detX)s−1det()(detX)s=s(s+1)?(s+n1)(detX)s1
where X=(xij)X=(xij) is an n×nn×n matrix of indeterminates and ∂=(∂/∂xij)=(/xij) is the corresponding matrix of partial derivatives. In this paper we present straightforward algebraic/combinatorial proofs of a variety of Cayley-type identities, both old and new. The most powerful of these proofs employ Grassmann algebra (= exterior algebra) and Grassmann–Berezin integration. Among the new identities proven here are a pair of “diagonal-parametrized” Cayley identities, a pair of “Laplacian-parametrized” Cayley identities, and the “product-parametrized” and “border-parametrized” rectangular Cayley identities.  相似文献   

12.
Full subcategories C ? Top of the category of topological spaces, which are algebraic over Set in the sense of Herrlich [2], have pleasant separation properties, mostly subject to additional closedness assumptions. For instance, every C-object is a T1-space, if the two-element discrete space belongs to C. Moreover, if C is closed under the formation of finite powers in Top and even varietal [2], then every C-object is Hausdorff. Hence, the T2-axiom turns out to be (nearly) superfluous in Herrlich's and Strecker's characterization of the category of compact Hausdorff spaces [1], although it is essential for the proof.If we think of C-objects X as universal algebras (with possibly infinite operations), then the subalgebras of X form the closed sets of a compact topology on X, provided that the ordinal spaces [0, β] belong to C. This generalizes a result in [3]. The subalgebra topology is used to prove criterions for the Hausdorffness of every space in C, if C is only algebraic.  相似文献   

13.
In this paper we answer the question of T. Banakh and M. Zarichnyi constructing a copy of the Fréchet-Urysohn fan Sω in a topological group G admitting a functorial embedding [0,1]⊂G. The latter means that each autohomeomorphism of [0,1] extends to a continuous homomorphism of G. This implies that many natural free topological group constructions (e.g. the constructions of the Markov free topological group, free abelian topological group, free totally bounded group, free compact group) applied to a Tychonov space X containing a topological copy of the space Q of rationals give topological groups containing Sω.  相似文献   

14.
Following the definition of domination of a topological space X by a metric space M introduced by Cascales, Orihuela and Tkachuk (2011) in [3], we define a topological cardinal invariant called the metric domination index of a topological space X   as minimum of the set {w(M):M is a metric space that dominates X}{w(M):M is a metric space that dominates X}. This invariant quantifies or measures the concept of M-domination of Cascales et al. (2011) [3]. We prove (in ZFC) that if K   is a compact space such that Cp(K)Cp(K) is strongly dominated by a second countable space then K is countable. This answers a question by the authors of Cascales et al. (2011) [3].  相似文献   

15.
We give an internal characterization of the exponential objects in the constructPrtop and investigate Cartesian closedness for coreflective or topological full subconstructs ofPrtop. If $ is the set {0} {1/n;n 1} endowed with the topology induced by the real line, we show that there is no full coreflective subconstruct ofPrtop containing $ and which is Cartesian closed. With regard to topological full subconstructs ofPrtop we give an example of a Cartesian closed one that is large enough to contain all topological Fréchet spaces and allT 1 pretopological Fréchet spaces.Aspirant NFWO  相似文献   

16.
Given a monad T on whose functor factors through the category of ordered sets with left adjoint maps, the category of Kleisli monoids is defined as the category of monoids in the hom-sets of the Kleisli category of T. The Eilenberg-Moore category of T is shown to be strictly monadic over the category of Kleisli monoids. If the Kleisli category of T moreover forms an order-enriched category, then the monad induced by the new situation is Kock-Zöberlein. Injective objects in the category of Kleisli monoids with respect to the class of initial morphisms then characterize the objects of the Eilenberg-Moore category of T, a fact that allows us to recuperate a number of known results, and present some new ones.  相似文献   

17.
Making use of the presentation of quasi-uniform spaces as generalised enriched categories, and employing in particular the calculus of modules, we define the Yoneda embedding, prove a (weak) Yoneda Lemma, and apply them to describe the Cauchy completion monad for quasi-uniform spaces.  相似文献   

18.
A quasiplane f(V)f(V) is the image of an n-dimensional Euclidean subspace V   of RNRN (1≤n≤N−11nN1) under a quasiconformal map f:RN→RNf:RNRN. We give sufficient conditions in terms of the weak quasisymmetry constant of the underlying map for a quasiplane to be a bi-Lipschitz n  -manifold and for a quasiplane to have big pieces of bi-Lipschitz images of RnRn. One main novelty of these results is that we analyze quasiplanes in arbitrary codimension N−nNn. To establish the big pieces criterion, we prove new extension theorems for “almost affine” maps, which are of independent interest. This work is related to investigations by Tukia and Väisälä on extensions of quasisymmetric maps with small distortion.  相似文献   

19.
Considering subobjects, points and a closure operator in an abstract category, we introduce a generalization of the Hausdorff separation axiom for topological spaces: the notion ofT 2-object. We discuss the properties ofT 2-objects, which depend essentially on the behaviour of points, and finally we relate them to the well-known separated objects.The results of this paper are essentially taken from the author's Ph. D. Thesis written under the supervision of Professors M. Sobral and W. Tholen and partially supported by a scholarship of I.N.I.C.-Instituto Nacional de Investigação Científica.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号