首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequency dependence of the real (?′) and imaginary (?″) parts of the dielectric constant of polycrystalline hematite (α-Fe2O3) has been investigated in the frequency range 0-100 kHz and the temperature range 190-350 K, in order to reveal experimentally the electron hopping mechanism that takes place during the Morin transition of spin-flip process. The dielectric behaviour is described well by the Debye-type relaxation (α-dispersion) in the temperature regions T<233 K and T>338 K. In the intermediate temperature range 233 K<T<338 K a charge carrier mechanism takes place (electron jump from the O2− ion into one of the magnetic ions Fe3+) which gives rise to the low frequency conductivity and to the Ω-dispersion. The temperature dependence of relaxation time (τ) in the −ln τ vs 103/T plot shows two linear regions. In the first, T<238 K, τ increases with increasing T implying a negative activation energy −0.01 eV, and in the second region T>318 K τ decreases as the temperature increases implying a positive activation energy 0.12 eV. The total reorganization energy (0.12-0.01) 0.11 eV is in agreement with the adiabatic activation energy 0.11 eV given by an ab initio model in the literature. The temperature dependence of the phase shift in the frequencies 1, 5, 10 kHz applied shows clearly an average Morin temperature TMo=284±1 K that is higher than the value of 263 K corresponding to a single crystal due to the size and shape of material grains.  相似文献   

2.
Double layered manganite of La1.4Ca1.6Mn2O7 (DLCMO) was prepared using solid state reaction method and had a metal-insulator transition temperature (TMI) of 125 K. The short range 2D-feerromagnetic ordering (TC2) starts growing when T<168 K and it gets converted into 3D-ferromagnetic ordering (TC1) at 114 K. Low field magnetoresistance (MR) behaviour of the DLCMO was investigated and compared with an infinite layered manganite La0.7Ca0.3MnO3 (LCMO). For DLCMO, in the temperature range between TC1 and TC2, the MR showed a gradual increase with the magnetic field. The observed MR and R-T behaviour of double layered manganite for TC1<T<TC2 has been explained in the frame work of the two phase model [ferromagnetic (FM) domains and paramagnetic (PM) regions] and percolative behaviour of transport in FM-PM mixture.  相似文献   

3.
The optical absorption of the As-prepared and annealed As45.2Te46.6In8.2 thin films are studied. Films annealed at temperatures higher than 453 K show a decrease in the optical energy gap (Eo). The value of Eo increases from 1.9 to 2.43 eV with increasing thickness of the As-prepared films from 60 to 140 nm. The effect of thickness on high frequency dielectric constant (?) and carrier concentration (N) is also studied. The crystalline structures of the As45.2Te46.6In8.2 thin films resulting from heat treatment of the As-prepared film at different elevated temperatures is studied by X-ray diffraction. An amorphous-crystalline transformation is observed after annealing at temperatures higher than 453 K. The electrical conductivity at low temperatures is found due to the electrons transport by hopping among the localized states near the Fermi level. With annealing the films at temperatures higher than 473 K (the crystallization onset temperature) for 1 h, the electrical conductivity increases and the activation energy decreases, which can be attributed to the amorphous-crystalline transformations.  相似文献   

4.
We report the resistivity (ρ)-temperature (T) patterns in (1-x)La0,7Ca0,3MnO3+xAl2O3 composites (0≤x≤0.05) over a temperature regime of 50-300 K. Al2O3 addition has increased the resistivity of these composites. The Curie temperature (TC) is almost independent on the Al2O3 content and is about 250 K for all the samples, while the metal-insulator transition temperature (TMI) decreases with increasing Al2O3 content. Based on the phenomenological equation for conductivity under a percolation approach, which is dependent on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental data (ρT) from 50 to 300 K and find that the activation barrier increases as Al2O3 content increases.  相似文献   

5.
Lanthanum based mixed valence manganite system La1−xCax−0.08Sr0.04Ba0.04MnO3 (LCSBMO; x=0.15, 0.24 and 0.33) synthesized through the sol-gel route is systematically investigated in this paper. The electronic transport and magnetic susceptibility properties are analyzed and compared, apart from the study of unit cell structure, microstructure and composition. Second order phase transition is observed in all the samples and significant difference is observed between the insulator to metal transition temperature (TMI) and paramagnetic (PM) to ferromagnetic (FM) transition temperature (TC). In contrast to the insulating FM behaviour usually observed in La1−xCaxMnO3 (LCMO) for x=0.15, a clear insulator to metal transition is observed for LCSBMO for the same percentage of lanthanum. The temperature dependent resistivity of polycrystalline pellets, when obeying the well studied law ρ=ρo+ρ2T2 for T<TMI, is observed to differ significantly in the values of ρo and ρ2, with the electrical conductivity increasing with x. The variable range hopping model has been found to fit resistivity data better than the small polaron model for T>TMI. AC magnetic susceptibility study of the polycrystalline powders of the manganite system shows the highest PM to FM transition of 285 K for x=0.33.  相似文献   

6.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

7.
Crystal structure, thermogravimetry (TG), thermal expansion coefficient (TEC), electrical conductivity and AC impedance of (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ (BSLCF; 0.05?x?0.20) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. A single cubic pervoskite was observed by X-ray diffraction (XRD). The TEC of BSLCF was increasing slightly with the increasing content of La, and all the compounds showed abnormal expansion at high temperature. Proved by the TG result, it was associated with the loss of lattice oxygen. The electrical conductivity, which is the main defect of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ (BSCF), was improved by La doping, e.g., the compound of x=0.20 demonstrated a conductivity of σ=376 S cm−1 at 392 °C. The increase of electrical conductivity resulted from the increased concentration of charge carrier induced by La doping. In addition, the AC impedance revealed the better electrochemical performance of BSLCF. For example, at 500 °C, the sample with composition x=0.15 yielded the resistance values of 2.12 Ω cm2, which was only 46% of BSCF.  相似文献   

8.
The physical properties of Tb3+ ions substitution at A-site are investigated in the layered manganite La1.2Sr1.8Mn2O7. A series of La1.2−xTbxSr1.8Mn2O7 (x=0, 0.05, 0.15, and 0.20) shows that doping with a Tb ion of smaller radius in La1.2Sr1.8Mn2O7 caused diffraction peaks to shift to high angle. Some samples have an impure diffraction at about 30°, but all samples form single-phase. Samples can be well indexed on a Sr3Ti2O7-type tetragonal structure with the space group I4/mmm. According to the M-T curves, when x≤0.05, the series of samples shows ferromagnetism at low temperatures. With increasing temperature, they have two magnetic transitions at different temperatures. When x≥0.15, the magnetizations dramatically decrease. The ρ–T curves of samples show the metal–insulator transition for x=0, 0.05, and the maximum MR values in magnetic field 5 T are 74% at about 73 K and 94% at about 86 K. When x≥0.15, the samples remain in the insulator state in the whole observed temperature range, and the maximum MR values of 86% and 69% appeared at 74 K and 42 K.  相似文献   

9.
We report here the structural, magnetotransport and morphological studies of Sb-doped La2/3Ba1/3Mn1−xSbxO3 perovskite manganites. Pristine material La2/3Ba1/3MnO3 (LBMO) shows two insulator-metal (I-M) transitions in the electrical resistivity-temperature (ρ-T) behavior. While the higher temperature transition (TP1) at ∼340 K is reminiscent of the usual I-M transition in manganites, the lower temperature transition (TP2) at ∼250 K has been ascribed to the grain boundary (GB) effects arising out of the ionic size mismatch between the ions present at the rare-earth site (La3+ and Ba2+). With Sb-doping TP1 shifts to lower temperatures while TP2 remains invariant up to 3% and shifts to lower temperature for 5%. Room temperature electrical resistivity and the peak values also increase successively with Sb-doping. Scanning electron micrographs of the samples exhibit a gradual increase in their grain sizes with Sb indicating a gradual decrease in the GB density. Shift of TP1 with doping is explained on the basis of a competition between double-exchange and super-exchange mechanisms. The overall electrical resistivity increases and the shift in the electrical resistivity hump (TP2) with Sb-doping is found related to be gradually decreasing GB density and the ensuing lattice strain increase at the GBs. The intrinsic magnetoresistance (MR) gets suppressed and extrinsic MR gets enhanced with Sb-doping. At T>TP1, the electrical resistivity is found to follow the adiabatic polaron hopping model whereas the electron-magnon scattering is found to dominate in the metallic regime (T<TP1).  相似文献   

10.
Magnetic susceptibility obtained from magnetization measurement (for fields H=0.1 and 1.0 T) of polycrystalline Eu2Ti2O7 shows two distinct features. Firstly, increases on cooling below 300 K and attains a temperature-independent constant value at 68 K (Tmax). Secondly, shows an antiferromagnetic increase below 4.9±0.1 K. The former behavior is explained by crystal field (CF) theory. CF levels and wave functions of ground and excited states are determined accurately from analyses of and earlier reported Mössbauer and optical spectra. Analysis of vs. 1/T curve at low temperatures gives the classical nearest-neighbor exchange interaction Jcl=−0.76 K and a weak dipolar interaction Dnn=0.0056 K. CP of polycrystalline sample of Eu2Ti2O7 and Y2Ti2O7 are measured between 1.8-35 and 1.8-120 K respectively and θD vs. T (K) curves are calculated. At 4 K, θD of Eu2Ti2O7 shows a kink and dCP/dT curve show a maximum. Optical results show energy exchange between Eu3+ ions at intrinsic and extrinsic (defect) sites via super-exchange interaction at low temperature which may account for the observed anomalous behavior of and CP.  相似文献   

11.
The sintering behavior, microstructures, and microwave dielectric properties of Ca2Zn4Ti15O36 ceramics with B2O3 addition were investigated. The crystalline phases and microstructures of Ca2Zn4Ti15O36 ceramics with 0-10 wt% B2O3 addition were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The sintering temperature of Ca2Zn4Ti15O36 ceramic was lowered from 1170 to 930 °C by 10 wt% B2O3 addition. Ca2Zn4Ti15O36 ceramics with 8 wt% B2O3 addition sintered at 990 °C for 2 h exhibited good microwave dielectric properties, i.e., a quality factor (Qf) 11,400 GHz, a relative dielectric constant (εr) 41.5, and a temperature coefficient of resonant frequency (τf) 94.4 ppm/°C.  相似文献   

12.
The transport properties of Sr0.98La0.02SnO3−δ in the system Sr1−xLaxSnO3−δ, after which the pyrochlore La2Sn2O7 appears, were investigated over the temperature range 4.2-300 K. The oxide was found to be n-type semiconductor with concomitant reduction of Sn4+ into Sn2+. The magnetic susceptibility was measured down to 4.2 K and is less than 3×10−5 emu cgs mol−1 consistent with itinerant electron behavior. The electron is believed to travel in a narrow band of Sn:5s character with an effective mass ∼4 mo. The highest band gap is 4.32 eV and the optical transition is directly allowed. A further indirect transition occurs at 4.04 eV. The electrical conductivity follows an Arrhenius-type law with a thermal activation of 40 meV and occurs by small polaron hopping between nominal states Sn4+/2+. The linear increase of thermo-power with temperature yields an electron mobility μ300 K (2×10−4 cm2 V−1 s−1) thermally activated. The insulating-metal transition seems to be of Anderson type resulting from random positions of lanthanum sites and oxygen vacancies. At low temperatures, the conduction mechanism changes to a variable range hopping with a linear plot Ln ρ−1 vs. T−4. The photo electrochemical (PEC) measurements confirm the n-type conductivity and give an onset potential of −0.46 VSCE in KOH (1 M). The Mott-Schottky plot C−2-V shows a linear behavior from which the flat band potential Vfb=+0.01 VSCE at pH 7 and the doping density ND=1.04×1021 cm−3 were determined.  相似文献   

13.
We investigate the chemical pressure effect due to P doping in the CeFeAs1−xPxO0.95F0.05(0≤x≤0.4) system. The compound CeFeAsO0.95F0.05 without P doping is on the boundary between antiferromagnet (AFM) and superconductor. The AFM order of Ce3+ local moments causes a significant reentrance behavior in both resistivity and magnetic susceptibility. Upon P doping, Tc increases and reaches a maximum of 21.3 K at x=0.15, and then it is suppressed to lower temperatures. Meanwhile, the AFM order of Ce3+ ions remains nearly the same in the whole doping range (0≤x≤0.4). Our experimental results suggest a competition between superconductivity and Kondo effect in the Ce 1111 system.  相似文献   

14.
The oxygen deficiency of perovskite-type Pr0.5Sr0.5FeO3−δ, studied by coulometric titration, thermogravimetry and Mössbauer spectroscopy, is significantly higher than that in La0.5Sr0.5FeO3−δ at 973-1223 K. The variations of hole mobility and Seebeck coefficient in oxidizing atmospheres, where the total conductivity of praseodymium-strontium ferrite is predominantly p-type electronic, suggest progressive delocalization of the p-type charge carriers on increasing oxygen chemical potential. As for other perovskite-type ferrites, reduction leads to the co-existence of vacancy-ordered and disordered domains. The n-type electronic conductivity of Pr0.5Sr0.5FeO3−δ at reduced p(O2) and the hole transport under oxidizing conditions are both lower compared to the La-containing analogue. Analogous conclusion was drawn for the ionic conductivity, calculated from the steady-state oxygen permeation data under oxidizing conditions and from the p(O2)-dependencies of total conductivity in the vicinity of electron-hole equilibrium points where the average iron oxidation state is 3+. The similar activation energies for partial ionic and electronic conductivities in Ln0.5Sr0.5FeO3−δ (Ln=La, Pr) indicate that the presence of praseodymium does not alter any of the conduction mechanisms but decreases the charge-carrier mobility due to the smaller radius of Pr3+ cations stabilized in the perovskite lattice.  相似文献   

15.
This paper reports the dielectric and impedance characteristics of ferroelectric SrBi2Nb2O9 (SBN) ceramics in the 100 Hz-1 MHz frequency range at various temperatures (300-823 K). A strong low frequency dielectric dispersion (LFDD) associated with an impedance relaxation has been found to exist in these ceramics in the temperature range 573-823 K. The Z″ of the AC complex impedance showed two distinct slopes in the frequency range 100 Hz-1 MHz suggesting the existence of two dispersion mechanisms. This non-ideal behavior has been explained on the basis of the expression, Z*=R0/(1+(/ω1)m+(/ω2)n) [J. Phys. Chem. Solids 53 (1992) 1] where ω1 and ω2 characterize the lattice response and the charge carrier behavior, respectively. The exponents m and n were obtained from the curve fitting. The exponent n was found to exhibit a minimum at the Curie temperature, Tc (723 K) whereas the m was temperature independent.  相似文献   

16.
The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin–spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325–376 K and the frequency range from 10−2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.  相似文献   

17.
Sealing quality lithium zinc silicate (LZS) glasses of compositions (wt.%) (a) LZSL- Li2O: 12.65, ZnO: 1.85, SiO2: 74.4, Al2O3: 3.8, K2O: 2.95, P2O5: 3.15, B2O3: 1.2 (low ZnO), and (b) LZSH- Li2O: 8.9, ZnO: 24.03, SiO2: 53.7, Na2O: 5.42, P2O5: 2.95, B2O3: 5 (high ZnO) were prepared by conventional melt-quench technique and converted to glass-ceramics by controlled crystallization process. The electrical properties of these samples were measured using ac impedance spectroscopy technique over a frequency range of 10 Hz-15 MHz at several temperatures in the range of 323-673 K. The ac conductivity, dc conductivity, dielectric constant and loss factor were obtained from these measurements. The dc conductivity (σdc) follows the Arrhenius behaviour with temperature. It is observed that σdc in LZSL glass is significantly higher than in the LSZH glass and the activation energies for σdc for LZSL and LZSH glasses are 0.59 and 1.08 eV, respectively. It further observed that the conductivity value decreases nearly one order of magnitude on conversion to glass-ceramics. The behaviour is explained on the basis of distributions and nature of alkali ions and network structures in these samples.  相似文献   

18.
The redox behavior of perovskite-type La0.90Sr0.10Al0.85−xFexMg0.15O3−δ (x=0.20-0.40) mixed conductors was analyzed by the Mössbauer spectroscopy and measurements of the total conductivity and Seebeck coefficient in the oxygen partial pressure range from 10−20 to 0.5 atm at 1023-1223 K. The results combined with oxygen-ion transference numbers determined by the faradaic efficiency technique in air, were used to calculate defect concentrations, mobilities, and partial ionic and p- and n-type electronic conductivities as a function of oxygen pressure. The redox and transport processes can be adequately described in terms of oxygen intercalation and iron disproportionation reactions, with the thermodynamic functions independent of defect concentrations. No essential delocalization of the electronic charge carriers was found. The oxygen non-stoichiometry values estimated from the conductivity vs. p(O2) dependencies, coincide with those evaluated from the Mössbauer spectra.  相似文献   

19.
We carefully studied the nonsuperconducting sample of the magneto-superconducting RuSr2(Eu1−xCex)Cu2O10−δ series with composition RuSr2EuCeCu2O10−δ. This compound seems to exhibit a complex magnetic state as revealed by host of techniques like resistivity, thermopower, magnetic susceptibility, and MR measurements. The studied compound exhibited ferromagnetic like M(H) loops at 5, 20, and 50 K, and semiconductor like electrical conduction down to 5 K, with −MR7 T of up to 4% at low temperatures. The −MR7 T decreases fast above 150 K and monotonically becomes close to zero above say 230 K. Below, 150 K −MR7 T decreases to around 3% monotonically down to 75 K, with further increase to 4% at around 30 K and lastly having a slight decrease below this temperature. The thermopower S(T) behavior closely followed the −MR7 T steps in terms of d(S/T)/dT slopes. Further, both MR7 T steps and d(S/T)/dT slopes are found in close vicinity to various magnetic ordering temperatures (Tmag) of this compound.  相似文献   

20.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号