共查询到20条相似文献,搜索用时 10 毫秒
1.
Bismuth selenotelluride (Bi2(Te0.9Se0.1)3) films were electrodeposited at constant current density from acidic aqueous solutions with Arabic gum in order to produce thin films for miniaturized thermoelectric devices. X-ray fluorescence spectroscopy determined film compositions. X-ray diffraction pattern shows that the films as deposited are polycrystalline, isostructural to Bi2Te3 and covered by crystallites. Mueller-matrix analysis reveals that the electroplated layers are optically like an isotropic medium. Their pseudo-dielectric functions were determined using mid-infrared spectroscopic ellipsometry. Tauc-Lorentz combined with Drude dispersion relations were successfully used. The energy band gap Eg was found to be about 0.15 eV. Moreover, the fundamental absorption edge was described by an indirect optical band-to-band transition. From Seebeck coefficient measurement, films exhibit n-type charge carrier and the value of thermoelectric power is about −40 μV/K. 相似文献
2.
Liu Hua-jun Wu Yun-long Huang Rong-jin Song Chun-mei Li Lai-feng 《Journal of Physics and Chemistry of Solids》2006,67(7):1492-1495
The Bi0.9Sb0.1 powders were prepared by mechanical alloying and then pressed under 6 GPa at different pressing temperatures. X-ray diffraction spectra showed that the single phase was formed. The nanostructure of grain was observed by bright-field imaging. Electrical conductivity, Seebeck coefficient, and thermal conductivity had been investigated in the temperature range of 80-300 K. The absolute Seebeck coefficient value of 120.3 μV/K was measured at 130 K. The figure-of-merit reached a maximum value of 0.90×10−3 K−1 at 140 K. 相似文献
3.
Hiroyuki Kitagawa Machiko Wakatsuki Hiroyuki Noguchi Kazuhiro Hasezaki 《Journal of Physics and Chemistry of Solids》2005,66(10):1635-1639
Temperature dependences of the Hall coefficient, Hall mobility and thermoelectric properties of Ni-doped CoSb3 have been characterized over the temperature range from 20 to 773 K. Ni-doped CoSb3 is an n-type semiconductor and the conduction type changes from n-type to p-type at around 450 K. The temperature for the transition from n-type to p-type increased with increasing Ni content x. The Seebeck coefficient reaches a maximum value near the transition temperature. The electrical resistivity indicates that Co1−xNixSb3 is a typical semiconductor when x≤0.03 and a degenerate semiconductor when x>0.03. Thermal conductivity analyses show that the lattice component is predominant at lower temperatures and carrier and bipolar components become large at temperatures higher than the transition temperature. The thermoelectric figure of merit reaches a maximum value close to the transition temperature and the largest value, 4.67×10−4 K−1 at 600 K, was obtained for x=0.05. 相似文献
4.
In situ synchrotron X-ray diffraction measurements are carried out on filled skutterudites CeFe4Sb12 and Ce0.8Fe3CoSb12 up to 32 and 20 GPa, respectively, at room temperature. No phase transformation was observed for both samples in the pressure range. Fitting the pressure-volume data (up to 10 GPa) to the third-order Birch-Murnaghan equation of state, the bulk modulus B0 is determined to be 74(4) GPa, with the pressure derivative B′0=7(2) for CeFe4Sb12, and B0=71(2) GPa and B′0=8(2) for Ce0.8Fe3CoSb12. The bulk moduli of filled skutterudites CeFe4Sb12 and Ce0.8Fe3CoSb12 in our study are smaller than those from previous studies on unfilled skutterudite CoSb3. The P-V curves of the unfilled skutterudite CoSb3 and filled skutterudites CeyFe4−xCoxSb12 showed good agreement, indicating that the Ce filling fraction and the replacement of Fe with Co have little effect on their compression behaviors. 相似文献
5.
The trap levels in nominally undoped Ga3InSe4 crystals were investigated in the temperature range of 10-300 K using the thermally stimulated currents technique. The study of trap levels was accomplished by the measurements of current flowing along the c-axis of the crystal. During the experiments we utilized a constant heating rate of 0.8 K/s. Experimental evidence is found for one hole trapping center in the crystal with activation energy of 62 meV. The analysis of the experimental TSC curve gave reasonable results under the model that assumes slow retrapping. The capture cross-section of the trap was determined as 1.0×10−25 cm2 with concentration of 1.4×1017 cm−3. 相似文献
6.
The nanocrystalline materials with the general formula Bi85Sb15−xNbx (x=0, 0.5, 1, 2, 3) were prepared by mechanical alloying and subsequent high-pressure sintering. Their transport properties involving electrical conductivity, Seebeck coefficient and thermal conductivity have been investigated in the temperature range of 80-300 K. The absolute value of Seebeck coefficient of Bi85Sb13Nb2 reaches a maximum of 161 μV/K at 105 K, which is 69% larger than that of Bi85Sb15 at the same temperature. The power factor and figure-of-merit are 4.45×10−3 WK−2m−1 at 220 K and 1.79×10−3 K−1 at 196 K, respectively. These results suggest that thermoelectric properties of Bi85Sb15 based material can be improved by Nb doping. 相似文献
7.
Heinrich Metzner Angela Dietz Udo Reislöhner Susanne Siebentritt Wolfgang Witthuhn 《Journal of Physics and Chemistry of Solids》2005,66(11):1940-1943
Using either single crystalline, epitaxially grown p-type CuGaSe2 (CGSe) films in Schottky diodes or polycrystalline p-CuGaSe2/n-CdS single-junction solar cells, we employed thermal admittance spectroscopy (TAS) to gain insight into the electronic transport mechanisms of CGSe. In both types of devices, the capacitance decreases about 50% to its geometrical value in a frequency dependent step between 250 and 150 K. For the Schottky diodes, this capacitance step reflects the response of the shallowest acceptors whose energy level is located 150 meV above the valence band. In the solar cells, a comparable response occurs but is superposed by carrier freeze-out outside the space-charge region. 相似文献
8.
This paper presents a study of bulk samples synthesized of the Ag1−xCuxInSe2 semiconductor system. Structural, thermal and electrical properties, as a function of the nominal composition (Cu content) x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 were studied. The influence of x on parameters such as melting temperature, solid phase transition temperature, lattice parameters, bond lengths, crystallite size t (coherent domain), electrical resistivity, electrical mobility and majority carrier concentration was analyzed. The electrical parameters are analyzed at room temperature. In general, it is observed that the properties of the Ag1−xCuxInSe2 system for x≤0.4 are dominated by n-AgInSe2, while for x>0.4, these are in the domain of p-CuInSe2. The crystallite size t in the whole composition range (x) is of the order of the nanoparticles. Secondary phases (CuSe, Ag2Se and InSe) in small proportion were identified by XRD and DTA. 相似文献
9.
M. Gloeckler 《Journal of Physics and Chemistry of Solids》2005,66(11):1891-1894
The quaternary system Cu(In,Ga)Se2 (CIGS) allows the band gap of the semiconductor to be adjusted over a range of 1.04-1.67 eV. Using a non-uniform Ga/In ratio throughout the film thickness, additional fields can be built into p-type CIGS-based solar cells, and some researchers have asserted that these fields can enhance performance. The experimental evidence that grading improves device performance, however, has not been compelling, mostly because the addition of Ga itself improves device performance and hence a consistent separation of the grading benefit has not always been achieved. Numerical modeling tools are used in this contribution to show that (1) there can be a beneficial effect of grading, (2) in standard thickness CIGS cells the benefit is smaller than commonly believed, (3) there is also the strong possibility of reduced rather than of increased device performance, and (4) thin-absorber cells derive more substantial benefit. 相似文献
10.
Chalcogenide glasses from the As2Se3-As2Te3-Sb2Te3 system were synthesized for the first time. The glass-forming region was determined by X-ray diffraction and electron microscopic analyses.The basic physicochemical parameters such as density (d), microhardness (HV) and temperatures of phase transformations (glass transition Tg, crystallization Tcr and melting Tm) were measured. Compactness and some thermomechanical characteristics such as volume (Vh) and formation energy (Eh) of micro-voids in the glassy network as well as the elasticity module (E) were calculated. The glass-forming ability was evaluated according to Hruby's criteria (KG). The correlation between composition and properties of the (As2Se3)x(As2Te3)y(Sb2Te3)z glasses was established and comprehensively discussed. 相似文献
11.
Superconductivity and non-metallicity induced by doping the topological insulators Bi2Se3 and Bi2Te3
Y.S. Hor J.G. Checkelsky D. Qu R.J. Cava 《Journal of Physics and Chemistry of Solids》2011,72(5):572-576
We show that by Ca doping the Bi2Se3 topological insulator, the Fermi level can be fine tuned to fall inside the band gap and therefore suppresses the bulk conductivity. Non-metallic Bi2Se3 crystals are obtained. On the other hand, the Bi2Se3 topological insulator can also be induced to become a bulk superconductor, with Tc∼3.8 K, by copper intercalation in the van der Waals gaps between the Bi2Se3 layers. Likewise, an as-grown crystal of metallic Bi2Te3 can be turned into a non-metallic crystal by slight variation in the Te content. The Bi2Te3 topological insulator shows small amounts of superconductivity with Tc∼5.5 K when reacted with Pd to form materials of the type PdzBi2Te3. 相似文献
12.
Shaohua Shen 《Journal of Physics and Chemistry of Solids》2008,69(10):2426-2432
Hexagonal ZnIn2S4 photocatalysts with different morphology and crystallinity (micro-structures) were prepared in aqueous-, methanol- and ethylene glycol-mediated conditions via a solvothermal/hydrothermal method. The aqueous- and methanol-mediated ZnIn2S4 presented to be Flowering-Cherry-like microsphere, while the ethylene glycol-mediated ZnIn2S4 presented to be micro-cluster. In comparison with two other products, aqueous-mediated ZnIn2S4 possessed the best crystallinity (micro-structure), which resulted in the highest photocatalytic activity for hydrogen evolution under visible-light irradiation. Additionally, aqueous-mediated ZnIn2S4 was found to be more stable than the other two ZnIn2S4 photocatalysts while undergoing the photocatalytic process. During the photocatalytic reaction, the average rates for hydrogen production over aqueous-, methanol- and ethylene glycol-mediated ZnIn2S4 were determined to be 27.3, 12.4 and 9.1 μmol h-1, respectively, in the present photocatalytic systems. 相似文献
13.
R.R. Sun X.Y. Qin L.L. Li D. Li J. Zhang Y.S. Zhang C.J. Tang 《Journal of Physics and Chemistry of Solids》2014
The Ruddlesden–Popper (RP) phase compounds (Sr0.95R0.05)3Ti2O7 (R=Er, Y, Dy, Gd, Eu, Sm, Nd and La) were prepared, and their transport and thermoelectric properties were investigated. The results indicate that high-T electrical resistivity ρ (300 K<T<1000 K) increases monotonically with temperature and basically has a relation ρ∝TM, with M varying from 0.91 to 1.92 at temperatures T>~650 K, suggesting acoustic phonon scattering is dominant. At low temperatures (5 K<T<300 K), ρ for (Sr0.95R0.05)3Ti2O7 (R=Nd and La) decreases monotonously with decreasing temperature, whereas ρ for (Sr0.95R0.05)3Ti2O7 (R=Er, Y, Dy, Gd, Eu and Sm) decreases first, and then increases instead as T decreases to a critical temperature Tc. Moreover, electrical conductivity σ∝T1/2 holds at lower temperatures, indicating that the electron–electron interaction caused by the presence of disorder dominates the transport process at the low temperatures. Besides, experiments show that at T<~400 K the lattice thermal conductivity of the doped compounds basically decreases with increase of the atomic mass of dopants. Generally, the figure of merit (ZT) at 1000 K increases first, and then decreases with the increase of the dopants' ionic radius, and the largest ZT is achieved in (Sr0.95Gd0.05)3Ti2O7 mainly owing to its lower lattice thermal conductivity. 相似文献
14.
Alka B. Garg A.K. Verma R.S. Rao B.K. Godwal 《Journal of Physics and Chemistry of Solids》2007,68(3):367-372
Results of X-ray diffraction, electrical resistance, thermoelectric power measurements and electronic band structure calculations on NiSi2 under high pressure are reported. The thermoelectric power (TEP) changes sign near 0.5 GPa (from +30 to −20 μV/K). As the pressure is increased, the value of TEP increases further in magnitude and near 7 GPa it becomes −50 μV/K. The pressure vs. resistance curve measured up to 30 GPa using diamond anvil (DAC)-based technique exhibits a broad hump near 12 GPa and exhibits hysteresis on pressure release. The ADXRD patterns up to 42 GPa show a gradual irreversible loss of long-range order in NiSi2 with the diffraction lines progressively broadening under pressure. The FWHM of the diffraction lines show a rapid increase in the half-widths close to 0.5 GPa and also near 12 GPa. The computed band structure at a compression (without any disorder) corresponding to 12 GPa, exhibits an electronic topological transition (ETT). The rapid increase in disorder above 12 GPa implies that the ETT may be facilitating the structural disorder. It is suggested that the pressure drives the material through a region of entropic and energetic barriers and induces disorder in the material. 相似文献
15.
Dongbin Hou Jianguo Du Jinyuan Yan Hongyang Zhu 《Journal of Physics and Chemistry of Solids》2010,71(11):1571-1575
The high-pressure behavior of rhenium disulfide (ReS2) has been investigated to 51.0 GPa by in situ synchrotron X-ray diffraction in a diamond anvil cell at room temperature. The results demonstrate that the ReS2 triclinic phase is stable up to 11.3 GPa, at which pressure the ReS2 transforms to a new high-pressure phase, which is tentatively identified with a hexagonal lattice in space group P6?m2. The high-pressure phase is stable up to the highest pressure in this study (51.0 GPa) and not quenchable upon decompression to ambient pressure. The compressibility of the triclinic phase exhibits anisotropy, meaning that it is more compressive along interlayer directions than intralayer directions, which demonstrates the properties of the weak interlayer van der Waals interactions and the strong intralayer covalent bonds. The largest change in the unit cell angles with increasing pressures is the increase of β, which indicates a rotation of the sulfur atoms around the rhenium atoms during the compression. Fitting the experimental data of the triclinic phase to the third-order Birch-Murnaghan EOS yields a bulk modulus of KOT=23±4 GPa with its pressure derivative KOT′= 29±8, and the second-order yields KOT=49±3 GPa. 相似文献
16.
Lin-Wei Ruan Geng-Sheng Xu Hai-Yu Chen Yu-Peng Yuan Xia Jiang Yun-Xiang Lu Yu-Jun Zhu 《Journal of Physics and Chemistry of Solids》2014
We have carried a detailed theoretical study on the geometry, density of states, elastic properties, sound velocities and Debye temperature of α-, β-, c- and p-C3N4 compounds under a maximum of pressure up to 100 GPa by using first principles calculations. The optimized lattice constants under zero pressure and zero temperature agreed well with the previous experimental and theoretical results. The band gaps of the four types of dense C3N4 were widened gradually with the increase of pressure. The calculated Poisson’s ratio γ and B/G values suggest α-, c- and p-C3N4 are brittle materials under 0–100 GPa, whereas β-C3N4 will become a ductile material as external pressure reaches 57 GPa. We found that the Debye temperature of the four dense C3N4 gradually reduces in the order of c-C3N4>p-C3N4>α-C3N4>β-C3N4 at 0 GPa and 0 K. However, the Debye temperature of c-C3N4 was lower than p-C3N4 when external pressure exceeds 6.3 GPa. It may hint that the results could be served as a valuable prediction for further experiments. 相似文献
17.
W. Luo J. Souza de Almeida R. Ahuja 《Journal of Physics and Chemistry of Solids》2008,69(9):2274-2276
We have calculated the electronic structure of CsBi4Te6 by means of first-principles self-consistent total-energy calculations within the local-density approximation using the full-potential linear-muffin-tin-orbital method. From our calculated electronic structure we have calculated the frequency dependent dielectric function. Our calculations shows that CsBi4Te6 a semiconductor with a band gap of 0.3 eV. The calculated dielectric function is very anisotropic. Our calculated density of state support the recent experiment of Chung et al. [Science 287 (2000) 1024] that CsBi4Te6 is a high performance thermoelectric material for low temperature applications. 相似文献
18.
A.A Abu-SehlyM.I Abd-Elrahman 《Journal of Physics and Chemistry of Solids》2002,63(1):163-170
The optical absorption of the As-prepared and annealed As45.2Te46.6In8.2 thin films are studied. Films annealed at temperatures higher than 453 K show a decrease in the optical energy gap (Eo). The value of Eo increases from 1.9 to 2.43 eV with increasing thickness of the As-prepared films from 60 to 140 nm. The effect of thickness on high frequency dielectric constant (?∞) and carrier concentration (N) is also studied. The crystalline structures of the As45.2Te46.6In8.2 thin films resulting from heat treatment of the As-prepared film at different elevated temperatures is studied by X-ray diffraction. An amorphous-crystalline transformation is observed after annealing at temperatures higher than 453 K. The electrical conductivity at low temperatures is found due to the electrons transport by hopping among the localized states near the Fermi level. With annealing the films at temperatures higher than 473 K (the crystallization onset temperature) for 1 h, the electrical conductivity increases and the activation energy decreases, which can be attributed to the amorphous-crystalline transformations. 相似文献
19.
Third-order nonlinear optical properties of Bi2S3 and Sb2S3 nanorods studied by the Z-scan technique
Cun Li Guang Shi Xianli Zhang Hongyao Xu 《Journal of Physics and Chemistry of Solids》2008,69(7):1829-1834
Bismuth sulfide (Bi2S3) and antimony sulfide (Sb2S3) nanorods were synthesized by hydrothermal method. The products were characterized by UV-vis spectrophotometer, X-ray powder diffraction (XRD) and transmission electron microscope (TEM). Bi2S3 and Sb2S3 nanorods were measured by Z-scan technique to investigate the third-order nonlinear optical (NLO) properties. The result of NLO measurements shows that the Bi2S3 and Sb2S3 nanorods have the behaviors of the third-order NLO properties of both NLO absorption and NLO refraction with self-focusing effects. The third-order NLO coefficient χ(3) of the Bi2S3 and Sb2S3 nanorods are 6.25×10−11 esu and 4.55×10−11 esu, respectively. The Sb2S3 and Bi2S3 nanorods with large third-order NLO coefficient are promising materials for applications in optical devices. 相似文献
20.
S.N. Mustafaeva Sh.G. Gasymov E.M. Kerimova M.M. Asadov 《Journal of Physics and Chemistry of Solids》2011,72(6):657-660
The effect of hydrostatic pressure (up to 0.82 GPa) on the electric properties of chain TlGaTe2 single crystals has been investigated in the temperature range 77-296 K. It has been shown that pressure leads to a considerable increase of conductivity (σ⊥) across the chains of TlGaTe2 single crystals. Parameters of localized states in the band gap of TlGaTe2 single crystal according to the low-temperature electrical measurements were obtained at various pressures. 相似文献