首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant (‘a’ and ‘c’), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 106 Ω-cm at higher temperature and 105 Ω-cm at lower temperature.  相似文献   

2.
Thin films of ZnO have been prepared on glass substrates at different thicknesses by spray pyrolysis technique using 0.2 M aqueous solution of zinc acetate. X-ray diffraction reveals that the films are polycrystalline in nature having hexagonal wurtzite type crystal structure. The resistivity at room temperature is of the order 10−2 Ω cm and decreased as the temperature increased. Films are highly transparent in the visible region. The dependence of the refractive index, n, and extinction coefficient, k, on the wavelength for a sprayed film is also reported. Optical bandgap, Eg, has been reported for the films. A shift from Eg = 3.21 eV to 3.31 eV has been observed for deposited films.  相似文献   

3.
CuIn(SxSe1−x)2 thin polycrystalline films were grown by the chemical spray pyrolysis method on the glass substrate at 280-400°C. The alloy composition in the film was studied with relation to that in the splay solution. Films were characterized by X-ray diffraction, optical absorption, Raman spectroscopy, resistivity and surface morphology. The CuInSe2-rich alloy films grown at high substrate temperature had chalcopyrite structure, while, the CuInS2-rich films grown at low substrate temperature exhibited sphalerite structure. Optical-gap energies were smaller than that of the bulk crystal by 0.1-0.2 eV for CuInS2-rich films. Raman spectra exhibited both CuInSe2-like and CuInS2-like A1 modes, and their relative changed systematically with alloy composition.  相似文献   

4.
The index dispersion at UV–VIS range for polycrystalline MgxZn1−xO films on silicon with different Mg concentration was obtained by spectroscopic ellipsometry (SE) method. It decreases with the increase of the Mg content. Above the relative peak wavelength, they are well fitted by the first-order Sellmeier relation. The band gap of films on sapphire of different Mg content was determined from transmission measurements. Photoluminescence (PL) illustrated that for MgxZn1−xO films every PL peak corresponded to a special excitation wavelength. The wavelength of the PL peak was proportional to the special excitation wavelength. A strong peak was obtained in the blue band for the films due to the large amount of oxygen vacancies caused by excess Zn and Mg atoms, while weak peak at ultraviolet band.  相似文献   

5.
MgxZn1−xO alloy films were prepared on sapphire substrates using Ar and N2 as the sputtering gases. The effect of the sputtering gas on the structural, optical and electrical properties of the MgxZn1−xO films was studied. By using N2 as the sputtering gas, the MgxZn1−xO film shows p-type conductivity and the band gap is larger than that employing Ar as the sputtering gas. The reason for this phenomenon is thought to be related to the reaction between N-O or N-Zn, and the N-doping.  相似文献   

6.
A series of CdxZn1−xS thin films have been deposited on glass substrates using spray pyrolysis technique. The crystallinity and microstructure of CdxZn1−xS thin films have been investigated by X-ray diffraction (XRD). Based on the results of Hall measurements, the films obtained were an n-type semiconductor. The X-ray data analysis of CdxZn1−xS thin films showed that the grain size of the CdxZn1−xS increased with increase in Cd composition. It is observed that the band gap increases as the Cd composition decreases. The results also showed a blue shift of absorption edge of optical transmission spectra is increases as Zn ratio increases. The effects of Cd composition on the structural and optical properties of CdxZn1−xS thin films were related to their grain size, stress and carrier concentration.  相似文献   

7.
Glasses in the system Ge-Se-S were prepared with different Se/S ratios in order to investigate the compositional dependence of selected physical properties. We report the results of a systematic study examining the UV-vis transmission, dc electrical conductivity and X-ray diffraction of the system Ge(SxSe1−x)2 with x=0, 0.1, 0.4 and 1.0 where replacement of S by Se was made. The changes in the optical energy gap, Eg, (from 1.95 to 2.43 eV) and band tail width, Ee, (from 103 to 243 meV) behave contrarily to the change in refractive index, n, (from 2.3 to 2) with the progressive replacement of S by Se. This behavior was discussed and interpreted with the changes in cohesive energy. The analysis of defects in the prepared films was carried out by the examination of activation energies obtained from dc electrical conductivity. The analysis of the X-ray diffraction pattern revealed a remarkable reduction in the intensity of the first and second diffraction peaks with the progressive replacement of S content, which confirms a change in the intermediate range order structure: reorganization of the structural properties.  相似文献   

8.
Total and partial density of states, frequency dependent complex refractive index including extinction coefficient, optical conductivity and transmission of MgxZn1−xO (0≤x≤1) in rocksalt and wurtzite phases are calculated using full potential linearized augmented plane wave (FP-LAPW) method. The real part of refractive index decreases while the extinction coefficient, optical conductivity and transmission for rocksalt phase increases with the increase in Mg concentration. In wurtzite phase, ordinary and extraordinary indices decrease while extinction coefficient, optical conductivity and transmission increase in parallel as well as perpendicular to c-axis with the increase in the Mg concentration.  相似文献   

9.
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers.  相似文献   

10.
Zn1−xNixO (x=0-0.25) hierarchical microspheres were synthesized via a solvothermal process in ethylene glycol. The magnetic microspheres were characterized by X-ray powder diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectra, X-ray photoelectron spectroscopy, room-temperature photoluminescence spectra, and vibrating sample magnetometer. The as-prepared samples take on a well-defined spherical architecture following the processes of spontaneous aggregation and localized Ostwald ripening. Dependence of the magnetization and morphology on Ni2+ content was observed. Magnetic hysteresis loops reveal that the Ni-doped ZnO microspheres exhibit ferromagnetic loops at room temperature.  相似文献   

11.
We investigate the optical properties of two-dimensional periodic arrays of well-aligned MgxZn1−xO nanowires, i.e., MgxZn1−xO nanowire photonic crystals. The nanowire photonic crystal can exhibit a photonic band gap in the visible range. As the mole fraction of Mg, x, increases, the edge frequencies of the band gap increase and the band gap size decreases. The characteristics of relative band gap and vacant point defect mode are also studied with varying x. From the finite-difference time-domain simulations, we show that the light extraction from nanowires can be controlled by varying the distance between optically excited nanowires and a waveguide, and the mole fraction of Mg. Controlling the light extraction from nanostructures can be useful in the implementation of nanoscale light emitting devices.  相似文献   

12.
Amorphous non-hydrogenated germanium carbide (a-Ge1−xCx) films have been prepared by magnetron co-sputtering method in a discharge of Ar. The dependence of structural and chemical bonding properties on the Ge/C ratio (R) has been investigated by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The relationship between the chemical bonding and the optical and electrical properties of the a-Ge1−xCx films has also been explored. It has been shown that the refractive index of the films increases from 2.9 to 4.4 and the optical gap decreases from 1.55 to 1.05 eV as R increases from 1.22 to 5.67. Moreover, the conductivity σ increases clearly and the activation energy Ea decreases with the increasing R owing to the reduction of sp3 CGe bonds. The a-Ge1−xCx films exhibit refractive index and optical gap values changing with x in a wide range, which may make a-Ge1−xCx films good candidates in the fields of protection coatings for IR windows and electronic devices.  相似文献   

13.
Thin films of Se 100−xInx (x=10, 20 and 30 at%) have been prepared by the flash evaporation technique. The effect of the indium content on optical band gap of the Se100−x Inx films has been investigated by the optical characterization. The optical band gap values of the Se100−x Inx thin films were determined and are found to decrease with increasing indium content. This indium content changes the width of localized states in the optical band gaps of the thin films. It was found that the optical band gap, Eg, of the Se100−x Inx films changes from 1.78 to 1.37 eV with increasing indium content from 10 to 30 at%, while the width of localized states in optical band gap changes from 375 to 342 meV. The temperature dependence of the dark electrical conductivity were studied in the temperature range 303-433 K and revealed two activation energies providing two electrical conduction mechanisms. The activation energy of the Se100−x Inx films in the high temperature region changes from 0.49 to 0.32 eV with increasing indium content from 10 to 30 at%, while the hopping activation energy in the lower temperature region changes from 0.17 to 0.22 meV. The change in the electrical conductivity with time during the amorphous-to-crystalline transformation is recorded for amorphous Se100−xInx films at two points of isothermal temperatures 370 and 400 K. The formal crystallization theory of Avrami has been used to calculate the kinetic parameters of crystallization.  相似文献   

14.
In this work, GaMnAs alloy materials were deposited on 7059 Corning glass and GaAs (1 0 0) substrates via RF magnetron sputtering technique. A concentration of Mn about 0.28 was obtained by Energy Dispersive X-ray spectroscopy. The substrate temperature was changed from 440 to 520 °C and layer thicknesses between 172 and 514 nm were obtained. Characterization by atomic force microscopy and X-ray diffraction were performed to determinate surface morphology and crystal structure, respectively. From transmittance spectral measurements we were able to determine optical constants: band gap energy (Eg), absorption coefficient (α), and refraction index (n). A correlation between morphological properties and substrate type was also studied. Diluted magnetic semiconductors like GaMnAs are considered among promising materials for the development of new spin-electronic devices.  相似文献   

15.
Ternary PdMnxFe1−x alloys are known to form a microinhomogeneous random mixture of PdMn and PdFe phases. The unconventional ρ(x) dependence of dc resistivity and singularities in low frequency optical conductivity spectra of alloys are described footing within the effective medium approach. The essential point of the model proposed is the anomalous role of insulating interfaces, whose proliferation at intermediate x gives rise to the observed maximum of resistivity near x?0.8.  相似文献   

16.
The structural, electronic, and optical properties of CdxZn1 − xSe alloys are investigated using the first-principles plane-wave pseudopotential method within the LDA approximations. In particular, the lattice constant, bulk modulus, electronic band structures, density of state, and optical properties such as dielectric functions, refractive index, extinction coefficient and energy loss function are calculated and discussed. Our results agree well with the available data in the literature.  相似文献   

17.
Fluorine doped zinc oxide (FZO) films were fabricated from fresh and aged (4, 8, 12 and 16 days) starting solutions using a simplified and low cost spray pyrolysis technique. The X-ray diffraction study showed that the preferential orientation is along the (0 0 2) plane for all the films irrespective of the age of the solution. The crystallite size calculated using the Scherrer’s formula is comparatively smaller only for the film prepared from the starting solution having aging time 4 days which may be due to the efficient incorporation of fluorine atoms into the ZnO lattice. This phenomenon is confirmed by the minimum resistivity value (3.14 × 10−2 Ω cm) obtained in this particular case. The visible transmittance and the optical band gap values are found to be in the range of 63–83% and 3.20–3.31 eV, respectively. The optical transmittance is found to decrease gradually as the aging time of the solution increases and the optical band gap is found to be slightly higher in the case of the film prepared from the fourth day solution. The scanning electron microscopy results depicted that the microstructure of ZnO:F films are largely influenced by the aging of the starting solution.  相似文献   

18.
We have performed a first-principle Full Potential Linearized Augmented Plane Waves calculation within the local density approximation (LDA) to the zinc-blende AlxGa1−xAs1−yNy to predict its optical properties as a function of N and Al mole fractions. The accurate calculations of electronic properties such as band structures and optical properties like refractive index, reflectivity and absorption coefficient of AlxGa1−xAs and AlxGa1−xAs1−yNy with x≤0.375 and y up to 4% are presented. AlxGa1−xAs on GaAs have a lattice mismatch less than 0.16% and the lattice constant of AlxGa1−xAs has a derivation parameter of 0.0113±0.0024. The band gap energies are calculated by LDA and the band anticrossing model using a matrix element of CMN=2.32 and a N level of EN=(1.625+0.069x) eV. The results show that AlxGa1−xAs can be very useful as a barrier layer in separate confinement heterostructure lasers and indicate that the best choice of x and y AlxGa1−xAs1−yNy could be an alternative to AlxGa1−xAs when utilized as active layers in quantum well lasers and high-efficiency solar cell structures.  相似文献   

19.
R. Ghosh 《Applied Surface Science》2009,255(16):7238-7242
MgxZn1−xO (x = 0.0-0.20) thin films have been deposited by sol-gel technique on glass substrates and the effect of growth ambient (air and oxygen) on the structural, and optical properties have been investigated. The films synthesized in both ambient have hexagonal wurtzite structure. The c-axis lattice constant decreases linearly with the Mg content (x) up to x = 0.05, and 0.10 respectively for air- and oxygen-treated films, above which up to x = 0.20, the values vary irregularly with x. The change in the optical band gap values and the ultraviolet (UV) peak positions of MgxZn1−xO films show the similar change with x. These results suggest that the formation of solid solution and thus the structural and optical properties of MgxZn1−xO thin films are affected by the growth ambient.  相似文献   

20.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of 15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号