首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The complex perovskite oxide a barium samarium niobate (BSN) synthesized by solid-state reaction technique has single phase with cubic structure. The scanning electron micrograph of the sample shows the average grain size of BSN∼1.22 μm. The field dependence of dielectric response and loss tangent were measured in the temperature range from 323 to 463 K and in the frequency range from 50 Hz to 1 MHz. The complex plane impedance plots show the grain boundary contribution for higher value of dielectric constant in the low frequency region. An analysis of the dielectric constant (ε′) and loss tangent (tan δ) with frequency was performed assuming a distribution of relaxation times as confirmed by the scaling behaviour of electric modulus spectra. The low frequency dielectric dispersion corresponds to DC conductivity. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with an activation energy of 0.71 eV. The frequency dependence of electrical data is also analyzed in the framework of conductivity and electric modulus formalisms. Both these formalisms show qualitative similarities in relaxation times. The scaling behaviour of imaginary part of electric modulus M″ and dielectric loss spectra suggest that the relaxation describes the same mechanism at various temperatures in BSN. All the observations indicate the polydispersive relaxation in BSN.  相似文献   

2.
Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole–Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.  相似文献   

3.
The dielectric permittivity of nanocrystalline cadmium-zinc ferrite prepared by the ball milling method has been investigated within a temperature range 77≤T≤300 K in presence of a magnetic field up to 1 T and in the frequency range 20 Hz-1 MHz. The dielectric permittivity follows the power law ε/(f)∝Tn where the temperature exponent ‘n’ is found to be frequency dependent. The dielectric properties of the samples have been analyzed in terms of electric modulus vector. The dielectric relaxation has been explained by interfacial polarization. The variation of the relaxation time with temperature indicates the presence of two different activation energies. The ac magnetoconductivity is positive for the milled sample and becomes negative for the unmilled sample. This behavior can be explained in terms of grain and grain boundary contribution to impedance of the samples.  相似文献   

4.
Synthesis and photoluminescence (PL) investigations of lithium metasilicate doped with Eu3+, Tb3+ and Ce3+ were carried out. PL spectra of Eu-doped sample showed peaks corresponding to the 5D07Fj (j=1, 2, 3 and 4) transitions under ultraviolet excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in structurally disordered environment. Tb3+-doped silicate sample showed blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions. Ce-doped sample under excitation from UV, showed a broad emission band in the region 350-370 nm with shoulders around 410 nm. The fluorescence lifetimes of Eu3+ and Tb3+ ions were found out to be 790 and 600 μs, respectively. For Ce3+, the lifetime was of the order of 45 ns. PL spectra of the europium- and terbium-doped samples were compared with commercial red (Y2O3:Eu3+) and green (LaPO4:Tb3+) phosphors, respectively. It was found that the emission from the doped silicate sample was 37% of the commercial phosphor in case of the Tb-doped sample and 8% of the commercial phosphor in case of the Eu-doped sample.  相似文献   

5.
The luminescence properties of zinc oxide (ZnO) nanocrystals grown from solution are reported. The ZnO nanocrystals were characterized by scanning electron microscopy, X-ray diffraction, cathodo- and photoluminescence (PL) spectroscopy. The ZnO nanocrystals have the same regular cone form with the average sizes of 100-500 nm. Apart from the near-band-edge emission around 381 nm and a weak yellow-orange band around 560-580 nm at 300 K, the PL spectra of the as-prepared ZnO nanocrystals under high-power laser excitation also showed a strong defect-induced violet emission peak in the range of 400 nm. The violet band intensity exhibits superlinear excitation power dependence while the UV emission intensity is saturated at high excitation laser power. With temperature raising the violet peak redshifts and its intensity increases displaying unconventional negative thermal quenching behavior, whereas intensity of the UV and yellow-orange bands decreases. The origin of the observed emission bands is discussed.  相似文献   

6.
An in-depth investigation of the dielectric characteristics of annealed phlogopite mica has been conducted in the frequency range 0.1 Hz–10 MHz and over the temperature range 653–873 K through the framework of dielectric permittivity, electric modulus and conductivity formalisms. These formalisms show qualitative similarities in relaxation processes. The frequency dependence of the M″ and dc conductivity is found to obey an Arrhenius law and the activation energy of the phlogopite mica calculated both from dc conductivity and the modulus spectrum is similar, indicating that same type of charge carriers are involved in the relaxation phenomena. The electric modulus and conductivity data have been fitted with the Havriliak–Negami function. Scaling of M′, M″, ac conductivity has also been performed in order to obtain insight into the relaxation mechanisms. The scaling behaviour indicates that the relaxation describes the same mechanism at different temperatures. The relaxation mechanism was also examined using the Cole–Cole approach. The study elaborates that the investigation regarding the temperature and frequency dependence of dielectric relaxation in the phlogopite mica will be helpful for various cutting edge applications of this material in electrical engineering.  相似文献   

7.
The photoluminescence (PL) properties of our silica wires were investigated with PL, PL excitation and PL decay. A high brightness photoluminescence band at 2.8 eV with a shoulder around 3.0 eV was observed in our silica wires. Two PL excitation bands for the 2.8 eV emission were observed at 4.77 and 3.37 eV. The 3.37 eV excitation band is reported for the first time. The characteristic of the blue PL in our silica wires was different from that of the well-known 2.7 eV PL in bulk silica material, suggesting a negation of previous attribution of blue emission in silica nanowires. The mechanism of the PL was also discussed.  相似文献   

8.
The complex dielectric spectra of dipropylsulfoxide (DPSO)/water mixtures in the whole concentration range have been measured as a function of frequency between 100 MHz and 20 GHz at four temperatures between 298.15 K and 328.15 K. The dielectric parameters, static dielectric constant (εs), relaxation time (τ) and relaxation strength (Δε) have been obtained by the least squares fit method. The relaxation in these mixtures can be described by two Debye functions, whereas for pure DPSO Cole-Davidson type is valid. The relaxation times of the mixtures show a maximum at about x(DPSO) ≈ 0.3. In the concentration range where a maximum appears, the interaction of DPSO with water is presumably the result of hydrogen bonding between water and the sulfonyl group of the sulfoxide molecule. The concentration and temperature dependent excess dielectric constant and effective Kirkwood correlation factor of the binary mixtures have been determined. The excess permittivity is found to be negative for all concentrations.  相似文献   

9.
Double perovskite oxide holmium zinc zirconate Ho2ZnZrO6 (HZZ) is synthesized by solid state reaction technique under a calcination temperature of 1100 °C. The crystal structure has been determined by powder X-ray diffraction, which shows monoclinic phase at room temperature. The variation of dielectric constant (ε′) and loss tangent (tan δ) with frequency is carried out assuming a distribution of relaxation times. The frequency corresponding to loss tangent peak is found to obey an Arrhenius law with activation energy of 89.7 meV. The frequency-dependant electrical data are analyzed in the framework of conductivity and electric modulus formalisms. Both these formalisms show qualitative similarities in relaxation times. The scaling behaviour of imaginary electric modulus shows the temperature-independent nature of the distribution of relaxation times. Nyquist plots are drawn to identify an equivalent circuit and to know the bulk and interface contributions.  相似文献   

10.
ZnO:Eu3+, Li+ films prepared by the dip-coating method were characterized by photoluminescence (PL) and electroluminescence (EL). When the ZnO:Eu3+, Li+ films were excited using UV light with energy corresponding to the band-to-band excitation of the host matrix, the PL spectra showed emissions from both ZnO and Eu3+ ions, while their EL spectra showed emissions only from Eu3+ ions, and no emission from ZnO could be detected. It is found that the EL emission intensity B is dependent on the applied voltage, B=Bo exp(−bV−1/2). With increasing frequency, the EL intensity dramatically increases at lower frequencies (<1000 Hz), and then increases gradually at higher frequencies (>1000 Hz).  相似文献   

11.
《Current Applied Physics》2010,10(2):676-681
Thioglycerol capped nanoparticles of ZnO have been prepared in methanol through chemical technique. Nanostructures of the prepared ZnO particles have been confirmed through X-ray diffraction measurement. The Debye–Scherrer formula is used to obtain the particle size. The average size of the prepared ZnO nanoparticles is found to be 50 nm. The frequency-dependent dielectric dispersion of the sample is investigated in the temperature range from 293 to 383 K and in a frequency range from 100 Hz to 1 MHz by impedance spectroscopy. An analysis of the complex permittivity (ε′ and ε′′) and loss tangent (tan δ) with frequency is performed assuming a distribution of relaxation times. The frequency-dependent maxima of the imaginary part of impedance are found to obey Arrhenius law with activation energy ∼1 eV. The scaling behavior of dielectric loss spectra suggests that the relaxation describes the same mechanism at various temperatures. The frequency-dependent electrical data are analyzed in the framework of conductivity and modulus formalisms. The frequency-dependent conductivity spectra obey the power law.  相似文献   

12.
Stable photoluminescence (PL) from AgI nanoparticles embedded in silica glass was investigated at room temperature. The Z1,2 excitonic emission of AgI exhibits fine structure with spacing of ∼0.20 eV (1610 cm−1), which is assigned to the frequency of vibration in interfacial water species. The PL excitation spectrum displays two newly observed bands at 3.45 and 4.35 eV associated with AgI-silica interaction. We suggest that the excitons in AgI are localized in the AgI/SiO2 interface region before radiative recombination.  相似文献   

13.
The complex dielectric and AC conductivity response of BaBi2Nb2O9 relaxor ferroelectric ceramics were studied as a function of frequency (100 Hz-10 MHz) at various temperatures. The observed dielectric behavior was characterized by two types of relaxation processes which were described by the ‘universal relaxation law’. The frequency dependence of conductivity which showed a classical relaxor behavior followed the Jonscher's universal law σ(ω)=σ0+Aωn. The exponent n exhibited a minimum in the vicinity of temperatures of dielectric anomaly while the pre-factor A showed a maximum. The temperature dependence of n followed the Vogel-Fulcher relation with activation energy of about 0.14 eV.  相似文献   

14.
In this paper Mössbauer, Raman and dielectric spectroscopy studies of BiFeO3 (BFO) ceramic matrix with 3 or 10 wt% of Bi2O3 or PbO added, obtained through a new procedure based on the solid-state method, are presented. Mössbauer spectroscopy shows the presence of a single magnetically ordered phase with a hyperfine magnetic field of 50 T. Raman spectra of BFO over the frequency range of 100-900 cm−1 have been investigated, at room temperature, under the excitation of 632.8 nm wavelength in order to evaluate the effect of additives on the structure of the ceramic matrix. Detailed studies of the dielectric properties of BiFeO3 ceramic matrix like capacitance (C), dielectric permittivity (ε) and dielectric loss (tan δ), were investigated in a wide frequency range (1 Hz-1 MHz), and in a temperature range (303-373 K). The complex impedance spectroscopy (CIS) technique, showed that these properties are strongly dependent on frequency, temperature and on the added level of impurity. The temperature coefficient of capacitance (TCC) of the samples was also evaluated. The study of the imaginary impedance (−Z″) and imaginary electric modulus (M″) as functions of frequency and temperature leads to the measurement of the activation energy (Eac), which is directly linked to the relaxation process associated with the interfacial polarization effect in these samples.  相似文献   

15.
Photoluminescence (PL) spectra of nitrogen-doped ZnO films (ZnO:N films) grown epitaxially on n-type ZnO single crystal substrates by using the plasma-assisted reactive evaporation method were measured at 5 K. In PL spectra, free exciton emission at about 3.375 eV was very strong and emissions at 3.334 and 3.31 eV were observed. These two emissions are discussed in this paper. The nitrogen concentration in ZnO:N films measured by secondary ion mass spectroscopy was 1019-20 cm−3. Current-voltage characteristics of the junction consisting of an n-type ZnO single crystal substrate and ZnO:N film showed good rectification. Also, ultraviolet radiation and visible light were emitted from this junction under a forward bias at room temperature. It is therefore thought that ZnO:N films have good crystallinity and that doped nitrogen atoms play a role as acceptors in ZnO:N films to form a good pn junction. From these phenomena and the excitation intensity dependency of PL spectra, emissions at 3.334 and 3.31 eV were assigned to neutral acceptor-bound exciton (A0X) emission and a donor-acceptor pair (DAP) emission due to doped nitrogen, respectively.  相似文献   

16.
The conductivity and dielectric permittivity spectra of single-crystalline La1.87Sr0.13CuO4 are directly measured with the electric field polarized perpendicular to the CuO planes (Ec) covering the frequency range 10-40 cm−1 and temperatures 5-300 K. We observe in the superconducting state a well pronounced excitation with strongly temperature dependent parameters. We suggest that the excitation is caused by the transverse Josephson plasma mode that appears due to the different strengths of Josephson coupling between the superconducting charge stripes in the neighboring and next-nearest neighboring copper-oxygen planes of La1.87Sr0.13CuO4. A strongly enhanced low-frequency (below 15 cm−1) absorption is seen in the superconducting state that is assigned to delocalized quasiparticles of as yet unknown origin.  相似文献   

17.
Phosphorus-doped ZnO nanoneedle arrays were prepared by phosphorus diffusion from InP substrate using a pulsed laser deposition (PLD) technique. The optical properties of ZnO nanoneedle were investigated by photoluminescence (PL) spectroscopy. Low-temperature photoluminescence spectrum measurements exhibited five acceptor-related emission peaks. The excitation intensity and temperature dependent photoluminescence spectra confirmed that the emission peaks corresponded to neutral-acceptor bound exciton, free electron to acceptor, donor-acceptor pairs, and their first and second photon replicas transitions. Acceptor-binding energy was determined to be 135-167 meV, which agrees well with the best-fitting result of the temperature dependent photoluminescence measurements and is reasonable in terms of theoretic prediction in ZnO.  相似文献   

18.
InGaN/GaN single quantum well (SQW) structures under various InGaN growth temperatures have been grown by metal organic chemical vapor deposition (MOCVD), the surface morphologies and optical properties are investigated. The radius of the typical V-pits on the SQW surface is affected by the InGaN well-temperature, and the surface roughness decreased as the well-temperature reduced. Room-temperature photoluminescence (PL) and cathode luminescence (CL) shows the quantum well and quantum dot (QD)-like localized state light emission of the SQWs grown at 700 and 690 °C, respectively, whereas the samples grown at 670 and 650 °C present hybrid emission peaks. Excitation power dependent PL spectra indicates the QD-like localized state emission dominates at low excitation power and the quantum well emission starts to take over at high excitation power.  相似文献   

19.
The dielectric behavior of polymethyl methacrylate/multi-walled carbon nanocomposites (PMMA/MWCNTs) was investigated using impedance spectroscopy technique. The composites were prepared using melt mixing with MWCNTs loading ranging from 0.01 to 10 wt%. The experimental results showed that the measured impedance reflects the insulating behavior of the host material (PMMA) with no appreciable effects of the filler less than 8.5 wt%. However, for the sample containing 10 wt%, the calculated value of dc conductivity increases with increasing temperature from 2.0×10−6 (Ω m)−1 to attain a value of 4.8×10−6 (Ω m)−1 at 110 °C. The percolation threshold derived from the dielectric data was estimated to be higher than 8.5 wt% and lower than 10 wt%. A temperature dependent electrical relaxation phenomenon was only observed in the sample containing 10 wt% of MWCNTs. The frequency dependence of the ac conductivity data followed a power law.  相似文献   

20.
Self-assembled Ni-doped zinc oxide (Zn1−xNixO, x = 0.05, 0.10, 0.15, i.e., ZnNiO, nominal composition) nanorod arrays vertically grown on the ZnO seed layer covered glass along [0 0 1] direction were synthesized by hydrothermal method. Their images and structures have been characterized by scan electron microscope (SEM), X-ray diffraction (XRD) and Raman spectra, showing that Ni doping is beneficial to the formation of ZnO nanorods with hexagonal cross section and the enhancement of ZnO crystal quality. X-ray photoemission spectroscopy (XPS) study further demonstrated that Ni atoms were successfully doped into ZnO lattices. The photoluminescence (PL) spectra of ZnNiO samples show near bandedge emission (NBE) peaks at about 380 nm at a low excitation power and the NBE peak position redshifts while its intensity continuously increases with the increase of Ni doping concentration. With the excitation power increasing, the NBE peak redshifts from 380 nm to about 400 nm for ZnNiO nanorod arrays. The NBE mechanisms for ZnNiO nanorod arrays have been discussed, which is helpful for understanding their room temperature ferromagnetisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号