首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in situ Raman spectroscopic study was conducted to investigate the pressure induced phase transformation of MgCr2O4 spinel up to pressures of 76.4 GPa. Results indicate that MgCr2O4 spinel undergoes a phase transformation to the CaFe2O4 (or CaTi2O4) structure at 14.2 GPa, and this transition is complete at 30.1 GPa. The coexistence of two phases over a wide range of pressure implies a sluggish transition mechanism. No evidence was observed to support the pressure-induced dissociation of MgCr2O4 at 5.7-18.8 GPa, predicted by the theoretical simulation. This high pressure MgCr2O4 polymorphism remains stable upon release of pressure, but at ambient conditions, it transforms to the spinel phase.  相似文献   

2.
The compositional and thermal dependencies of phase and electrical behaviour of compositions in the system Bi14W1 − xLaxO24 − 3x/2 (0.00 < x < 1.00) have been studied by X-ray powder diffraction, differential thermal analysis and a.c. impedance spectroscopy. The system exhibits polymorphism and phase separation, which shows both compositional and thermal dependence. Compositions with x = 0.25 and x = 0.50 exhibit a single phase tetragonal structure at room temperature. In contrast, the x = 0.75 composition at room temperature shows a mixture of a cubic phase and a secondary β-Bi2O3 related tetragonal phase. A full solid solution is observed at high temperatures, corresponding to the occurrence of a δ-Bi2O3 type phase. The appearance of the various phases correlates well with the observed electrical behaviour. The x = 0.75 composition exhibits exceptionally high conductivity at high temperatures (σ800 = 1.34 S cm− 1), but also shows significant phase separation at lower temperatures.  相似文献   

3.
Phase relationships, thermal expansion and electrical properties of Mg1 − xFexO (x = 0.1-0.45) cubic solid solutions and Fe3 − x − yMgxCryO4 ± δ (x = 0.7-0.95; y = 0 or 0.5) spinels were studied at 300-1770 K in the oxygen partial pressure range from 10 Pa to 21 kPa. Increasing iron content enlarges the spinel phase stability domain at reduced oxygen pressures and elevated temperatures. The total conductivity of the spinel ceramics is predominantly n-type electronic and is essentially p(O2)-independent within the stability domain. The computer simulations using molecular dynamics technique confirmed that overall level of ion diffusion remains low even at high temperatures close to the melting point. Temperature dependencies of the total conductivity in air exhibit a complex behavior associated with changing the dominant defect-chemistry mechanism from prevailing formation of the interstitial cations above 1370-1470 K to the generation of cation vacancies at lower temperatures, and with kinetically frozen cation redistribution in spinel lattice below 700-800 K. The average thermal expansion coefficients of the spinel ceramics calculated from dilatometric data in air vary in the range (9.6-10.0) × 10− 6 K− 1 at 300-500 K and (13.2-16.1) × 10− 6 K− 1 at 1050-1370 K. Mg1 − xFexO solid solutions undergo partial decomposition on heating under oxidizing and mildly reducing conditions, resulting in the segregation of spinel phase and conductivity decrease.  相似文献   

4.
A Ti-rich oxide, (Ti0.50Zr0.26Mg0.14Cr0.10)∑=1.0O1.81, was synthesized at 8.8 GPa and 1600 °C using a multi-anvil apparatus. Its crystal structure at ambient conditions and compressibility up to 10.58 GPa were determined with single-crystal X-ray diffraction. This high-pressure phase is isomorphous with cubic zirconia (fluorite-type) with space group Fm3¯m and unit-cell parameters a=4.8830(5) Å and V=116.43(4) Å3. Like stabilized cubic zirconia, the structure of (Ti0.50Zr0.26Mg0.14Cr0.10)O1.81 is also relaxed, with all O atoms displaced from the (, , ) position along 〈1 0 0〉 by 0.319 Å and all cations from the (0, 0, 0) position along 〈1 1 1〉 by 0.203 Å. No phase transformation was detected within the experimental pressure range. Fitting the high-pressure data (V vs. P) to a third-order Birch-Murnaghan EOS yields K0=164(4) GPa, K′=4.3(7), and V0=116.38(3) Å3. The bulk modulus of (Ti0.50Zr0.26Mg0.14Cr0.10)O1.81 is significantly lower than that (202 GPa) determined experimentally for cubic TiO2 or that (~210 GPa) estimated for cubic ZrO2. This study demonstrates that cubic TiO2 may also be obtained by introducing various dopants, similar to the way cubic zirconia is stabilized below 2370 °C. Furthermore, (Ti0.50Zr0.26Mg0.14Cr0.10)O1.81 has the greatest ratio of Ti4+ content vs. vacant O2− sites of all doped cubic zirconia samples reported thus far, making it a more promising candidate for the development of electrolytes in solid oxide fuel cells.  相似文献   

5.
The crystal structure evolution of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K≤T≤1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P21/n (#14) space group and the 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) Å, b=5.82341(4) Å, c=8.21939(7) Å, V=278.11(6) Å3 and angle β=90.311(2)o. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) Å, b=5.82526(4) Å, c=8.22486(1) Å, V=278.56(2) Å3 and angle β=90.28(2)o. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) Å, c=8.27261(1) Å, V=282.89(5) Å3 and angle β=90.02(9)o. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.  相似文献   

6.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

7.
(Ca1 − x, Srx)Al2Si2O8:0.06Ce3+, M+ (M+ = Li+, Na+, K+) phosphors have been prepared by conventional solid-state reaction method. The structural and optical properties of the phosphors were characterized by X-ray diffraction (XRD) technique and spectrophotometer, respectively. A regular variation was found among the XRD patterns of (Ca1 − x, Srx)Al2Si2O8:0.06Ce3+ phosphors based on the changing of Sr content. With the increase of Sr content, the maximum of emission band presented slight blue shifts (~ 15 nm). The luminescence intensity of CaAl2Si2O8:0.06Ce3+ and SrAl2Si2O8:0.06Ce3+ were significantly enhanced when K+ and Li+ were incorporated, respectively.  相似文献   

8.
In H2 and H2/CO oxidation, the H + O2 + M termination step is one of the most important reactions at elevated pressures. With the recent, increased interest in synthetic fuels, an accurate assessment of its rate coefficient becomes increasingly important, especially for real fuel/air mixtures. Ignition delay times in shock-tube experiments at the conditions selected in this study are only sensitive to the rates of the title reaction and the branching reaction H + O2 = OH + O, the rate of which is known to a high level of accuracy. The rate coefficient of the title reaction for M = N2, Ar, and H2O was determined by adjusting its value in a detailed chemical kinetics model to match ignition delay times for H2/CO/O2/N2, H2/CO/O2/Ar, and H2/CO/O2/N2/H2O mixtures with fuel/air equivalence ratios of ? = 0.5, 0.9, and 1.0. The rate of H + O2 + N2 = HO2 + N2 was measured to be 2.7 (−0.7/+0.8) × 1015 cm6/mol2 s for T = 916-1265 K and P = 1-17 atm. The present determination agrees well with the recent study of Bates et al. [R.W. Bates, D.M. Golden, R.K. Hanson, C.T. Bowman, Phys. Chem. Chem. Phys. 3 (2001) 2337-2342], whose rate expressions are suggested herein for modeling the falloff regime. The rate of H + O2 + Ar = HO2 + Ar was measured to be 1.9 × 1015 cm6/mol2 s for T = 932-965 K and P = 1.4 atm. The rate of H + O2 + H2O = HO2 + H2O was measured to be 3.3 × 1016 cm6/mol2 s for T = 1071-1161 K and P = 1.3 atm. These are the first experimental measurements of the rates of the title reactions in practical combustion fuel/air mixtures.  相似文献   

9.
Fine (oscillating) structure (FS) in the elastically scattered electron spectra (ESES) [O. Bondarchuk, S. Goysa, I. Koval, P. Melnik, M. Nakhodkin, Surf. Sci. 258 (1991) 239; O. Bondarchuk, S. Goysa, I. Koval, P. Melnik, M. Nakhodkin, Surf. Rev. Lett. 4 (1997) 965] was used to investigate surface structure of the SiOx (0 ≤ x ≤ 2). SiOx surface with different stoichiometry was prepared by implantation of 500 eV oxygen ions into a silicon wafer. Fourier transformation of the FS ESES contains one peak at 2.32 Å for Si, two peaks at 1.62 Å and 2.65 Å for a-SiO2 and three peaks centered at 1.6-1.7 Å, 2.1-2.2 Å and 2.65-3.04 Å for SiOx. Peaks at 1.62 Å and 2.65 Å are assigned to Si-O and O-O nearest distances correspondently. Ratio of the area under the peak at 2.65 Å to the area under the peak at 1.62 Å turned out to be not constant but grows linearly with the composition parameter x. The latter is considered to prove validity of the Random Bond Model to describe short-range order on the surface of non-stoichiometric silicon oxide.  相似文献   

10.
A novel layered hydrotalcite-like material, Co7(H2O)2(OH)12(C2H4S2O6), has been prepared hydrothermally and the structure determined using single crystal X-ray diffraction (a=6.2752(19) Å, b=8.361(3) Å, c=9.642(3) Å, α=96.613(5)°, β=98.230(5)°, γ=100.673(5)°, R1=0.0551). The structure consists of brucite-like sheets where 1/6 of the octahedral sites are replaced by two tetrahedrally coordinated Co(II) above and below the plane of the layer. Ethanedisulfonate anions occupy the space between layers and provide charge balance for the positively charged layers. The compound is ferrimagnetic, with a Curie temperature of 33 K, Curie-Weiss θ of −31 K, and a coercive field of 881 Oe at 5 K.  相似文献   

11.
The absorption spectrum of ozone, 16O3, has been recorded in the 5903-5960 cm−1 region by high sensitivity CW-cavity ring down spectroscopy (αmin ∼ 5 × 10−10 cm−1). The ν1 + 3ν2 + 3ν3 and 4ν1 + ν2 + ν3 A-type bands centred at 5919.15 and 5947.07 cm−1 were newly observed. A set of 173 and 168 energy levels could be experimentally determined for the (1 3 3) and (4 1 1) states, respectively. Except for a few Ka = 5 levels of the (4 1 1) state, the rotational structure of the two states was found mostly unperturbed. The spectroscopic parameters were determined from a fit of the corresponding line positions by considering the (1 3 3) and (4 1 1) states as isolated. The determined effective Hamiltonian and transition moment operators were used to generate a list of 785 transitions given as Supplementary Material.  相似文献   

12.
In a temperature dependent neutron powder diffraction (NPD) study we observed the high temperature cubic phase at 973 K in the polycrystalline double perovskite Sr2MnWO6. Rietveld analysis of the NPD data shows that the room temperature tetragonal phase exists up to 573 K (space group P42/n, a=8.0119 (4) Å, c=8.0141(8) Å). At 773 K, the primitive tetragonal symmetry change to body-centred tetragonal (space group I4/m, a=5.6935(5) Å, c=8.077(1) Å) and finally at 973 K it becomes face-centred cubic (space group Fm-3m, a=8.0864(8) Å). The changes in the structural symmetry are connected to the small distortion of the B-site octahedra, which are insensitive to the Differential Thermal Analysis (DTA) signal.  相似文献   

13.
We investigated the growth of Fe nanostructured films on c(2 × 2)-N/Cu(1 0 0) surface with Fe K-edge X-ray absorption fine structure (XAFS) in the near edge and in the extended energy region. The high photon flux of the incident X-rays allowed us to perform multishell analysis of the XAFS oscillations for Fe coverage ΘFe < 1 ML. This data analysis yields a detailed investigation of the atom geometry and some insights in the film morphology. At ΘN < 0.5 ML (N saturation coverage) there is absence of contribution to XAFS from N atoms. First shell analysis of linearly polarized XAFS gives Fe-Fe (or Fe-Cu) bond length values varying between R1 = 2.526 ± 0.006 Å at the highest Fe coverage (3 ML ) and R1 = 2.58 ± 0.01 Å at ΘFe = 0.5 ML, ΘN = 0.3 ML, with incidence angle Θ = 35°. These values are different from the case of bcc Fe (R = 2.48 Å), and compatible with fcc Fe (R1 = 2.52 Å) and fcc Cu (R1 = 2.55 Å). At the Fe lowest coverage (ΘFe = 0.5 ML) the dependence of R1 on the incidence angle indicates expansion of the outmost layer. Near edge spectra and multishell analysis can be well reproduced by fcc geometry with high degree of static disorder. At N saturation pre-coverage (ΘN = 0.5 ML) the XAFS analysis has to keep into account the Fe-N bonding. The results suggest two different adsorption sites: one with Fe in a fcc hollow site, surrounded by other metal atoms as nearest neighbours, and one resulting from an exchange with a Cu atom underneath the N layer.  相似文献   

14.
Synthesis of cobalt nitrides has been tried in a supercritical nitrogen fluid at high pressure (about 10 GPa) and high temperature (about 1800 K) using diamond anvil cell and YAG laser heating system. We have succeeded to synthesize a single phase of the CFe2-type Co2N easily in a short time. This is the first synthesis by a simple reaction between the pure cobalt and pure nitrogen (supercritical fluid nitrogen). The cell parameters of the synthesized Co2N are a=4.662(9) Å, b=4.332(5) Å and c=2.749(9) Å, respectively.  相似文献   

15.
 The crystal structure of a layered ternary carbide, Ti3(Si0.43Ge0.57)C2, was studied with single-crystal X-ray diffraction. The compound has a hexagonal symmetry with space group P63/mmc and unit-cell parameters a=3.0823(1) Å, c=17.7702(6) Å, and V=146.21(1) Å3. The Si and Ge atoms in the structure occupy the same crystallographic site surrounded by six Ti atoms at an average distance of 2.7219 Å, and the C atoms are octahedrally coordinated by two types of symmetrically distinct Ti atoms, with an average C-Ti distance of 2.1429 Å. The atomic displacement parameters for C and Ti are relatively isotropic, whereas those for A (=0.43Si+0.57Ge) are appreciably anisotropic, with U11 (=U22) being about three times greater than U33. Compared to Ti3SiC2, the substitution of Ge for Si results in an increase in both A-Ti and C-Ti bond distances. An electron density analysis based on the refined structure shows that each A atom is bonded to 6Ti atoms as well as to its 6 nearest neighbor A site atoms, whether the site is occupied by Si or Ge, suggesting that these bond paths may be significantly involved with electron transport properties.  相似文献   

16.
A novel mixed cadmium zirconium cesium oxalate with an open architecture has been synthesized from precipitation methods at room pressure. It crystallizes with an hexagonal symmetry, space group P3112 (no. 151), a=9.105(5) Å, c=23.656(5) Å, V=1698(1) Å3 and Z=3. The structure displays a [CdZr(C2O4)4]2− helicoidal framework built from CdO8 and ZrO8 square-based antiprisms connected through bichelating oxalates, which generates channels along different directions. Cesium cations, hydronium ions and water molecules are located inside the voids of the anionic framework. They exhibit a dynamic disorder which has been further investigated by 1H and 133Cs solid-state NMR. Moreover a phase transition depending both upon ambient temperature and water vapor pressure was evidenced for the title compound. The thermal decomposition has been studied in situ by temperature-dependent X-ray diffraction and thermogravimetry. The final product is a mixture of cadmium oxide, zirconium oxide and cesium carbonate.  相似文献   

17.
The growth and oxidation of a thin film of Ni3Al grown on Ni(1 0 0) were studied using Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and high resolution electron energy loss spectroscopy (EELS). At 300 K, a 12 Å thick layer of aluminium was deposited on a Ni(1 0 0) surface and subsequently annealed to 1150 K resulting in a thin film of Ni3Al which grows with the (1 0 0) plane parallel to the (1 0 0) surface of the substrate. Oxidation at 300 K of Ni3Al/Ni(1 0 0) until saturation leads to the growth of an aluminium oxide layer consisting of different alumina phases. By annealing up to 1000 K, a well ordered film of the Al2O3 film is formed which exhibits in the EEL spectra Fuchs-Kliewer phonons at 420, 640 and 880 cm−1. The LEED pattern of the oxide shows a twelvefold ring structure. This LEED pattern is explained by two domains with hexagonal structure which are rotated by 90° with respect to each other. The lattice constant of the hexagonal structure amounts to ∼2.87 Å. The EELS data and the LEED pattern suggest that the γ-Al2O3 phase is formed which grows with the (1 1 1) plane parallel to the Ni(1 0 0) surface.  相似文献   

18.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface.  相似文献   

19.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

20.
X-ray photoelectron spectroscopy has been used to study the clean TaB2(0 0 0 1) surface and its reaction with O2. In agreement with previous studies, XPS indicates that the clean surface is boron terminated. The topmost boron layer shows a chemically shifted B 1s peak at 187.1 eV compared to a B 1s peak at 188.6 eV for boron layers below the surface. The 187.1-188.6 eV peak intensity ratio and its variation with angle between the crystal normal and the detector is well described by a simple theoretical model based on an independently calculated electron inelastic mean free path of 15.7 Å for TaB2. The dissociative sticking probability of O2 on the boron-terminated TaB2(0 0 0 1) surface is lower by a factor of 104 than for the metal-terminated HfB2(0 0 0 1) surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号