首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis of complex mixtures, such as essential oils requires high resolution chromatographic separation and even the use of very efficient columns cannot prevent the overlapping of certain peaks. This means that it is very difficult to obtain high quality mass spectra when the sample contains numerous constituants. The pre-separation by column or preparative GC leads to a considerable loss of material and, often, to the formation of artefacts. In order to overcome some of these difficulties, we have built a simple multi-column system that is connected to an MS-MS instrument. Two independent chromatographs equipped with capillary columns were connected. The interface, which consists of a modified PTV injector, gives the possibilities of direct transfer, back-flushing, heart-cutting, intermediate cold trapping, trace enrichment and selective sample introduction. These operations are controlled by a switching valve system (DANI-MFC 393 unit). The chromatographic system was first connected to a MS-MS instrument which may result in high MS and collision activated MS spectra.  相似文献   

2.
The commercially available portable gas chromatographs have a rather limited scope of applications, typically allowing analysis of gaseous samples only, and having relatively poor sensitivity. Combination of those instruments with modern sampling/sample preparation techniques can remedy these problems. A Chrompack micro-GC system equipped with a thermal conductivity detector has been coupled to membrane extraction with a sorbent interface (MESI). The sorbent trap has replaced the GC injector. The design of the trap was also modified in order to enhance the preconcentration of analytes. The use of a thin flat sheet membrane reduces the response time, and decreases the memory effect of the system. Rapid separation times were achieved, and the sensitivity was significantly improved. MESI enables semi-continuous monitoring of both gaseous and aqueous samples, owing to the selectivity of the membrane material. The system does not use moving parts, therefore being reliable. The sensitivity of the micro-GC system was increased by a factor of more than 100 by the addition of the MESI system, even with a preconcentration time as short as 1 min. Chloroform, having a concentration lower than 1 ppb, was detected in tap water. A cup system was used to allow headspace sampling of volatile organic compounds from aqueous matrices, keeping the membrane away from interfering species that could be present in water, and improving the mass transfer. A linear calibration line was obtained, and the estimated limit of detection was 60 ppt. This represents a great improvement for the sensitivity of the micro-GC system.  相似文献   

3.
A system of two emulsion droplets is examined as they mutually approach at small separations. The mass transfer of diffusion-controlled surfactants towards the interface is regarded. The cases of a surfactant soluble in only one of the phases as well as in all of them are analysed. Quantitative estimates are presented for the tangential mobility of the droplet/thin layer interface. Different regimes of mass transfer and flow in the drops and a creeping flow and various regimes of mass transfer in the thin layer between them are considered.  相似文献   

4.
Cyclic voltammetry has been used to study the coupling of ion transfer reactions at a liquid membrane. The liquids are either supported by a porous hydrophobic membrane (polyvinylidene difluoride, PVDF) when the organic solvent is non-volatile (o-nitrophenyloctylether) or are merely a free standing organic solvent layer such as 1,2-dichloroethane comprised between two hydrophilic dialysis membranes supporting the adjacent aqueous phases. The passage of current across the liquid membrane is associated with two ion transfer reactions across the two polarised liquid liquid interfaces in series. It is shown that it is possible to study the transfer of highly hydrophilic ions at one interface by limiting the mass transfer of the other ion transfer reaction at the other interface. Indeed, for systems comprising an ion M in one aqueous phase and a reference ion R partitioned between the membrane and the other aqueous phase, the observed and simulated cyclic voltammograms have a half-wave potential determined by the Gibbs energy of transfer of M transferring at one interface and by the limiting mass transfer of R at the other interface. This new methodology opens a way to measure the Gibbs energy of transfer of highly hydrophilic or hydrophobic ions, which usually limits the potential window at single liquid liquid interfaces (ITIES).  相似文献   

5.
An on-line coaxial continuous-flow capillary-zone electrophoresis/fast-atom bombardment mass spectrometry (CZE/FAB-MS) interface is described. This interface is shown to be capable of acquiring mass spectra in an on-line fashion from low femtomole amounts of peptides while maintaining high (hundreds of thousands of plates) electrophoretic separation efficiencies. Active electrophoretic transport of the analytes directly to the FAB probe tip obviates the need for a transfer line from the end of the CZE capillary to this point, and thereby precludes the zone broadening that would otherwise occur both within such a transfer line and in the connections between the CZE column and the transfer line. The capability of acquiring an on-line tandem mass spectrometry (MS/MS) spectrum of an electrophoretically separated analyte using this interface is also demonstrated.  相似文献   

6.
The corrosion mechanisms occurring at the homogeneous porous layer was determined assuming that the pores had a cylindrical geometry, and that the initial interface of a carbon steel-CO2 solution behaved as a transmission line (TL). TL modeling quantitatively assessed the impedance distribution and the mesoporous layer formation and evolution at the interface, while describing the physical characteristics of the mesoporous FeCO3 layer at the base and wall within the initial pore. The TL helped to characterize four stages during the interfacial evolution: active, active-porous layer, mixed layer, and the reactive stages. Using TLs helped to quantify the dissolution process and distinguish the mechanisms with good agreement between calculated magnitudes and experimental data.  相似文献   

7.
There are numerous options for mass spectrometric analysis of lipids, including different types of ionization, and a wide variety of experiments using different scan modes that can be conducted. Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) provide complementary types of information that are both desirable. However, the duty cycle of the mass spectrometer places limits on the number of experiments that can be performed, and instruments usually employ only one type of ionization at a time. This work describes the approaches we have used that employ two mass spectrometers in parallel or in a column-switching configuration that allows multiple ionization modes and types of experiments to be conducted simultaneously during a single chromatographic run. These data demonstrate how use of two systems can reduce or eliminate the need for repeat injections and repetitive experiments. Approaches are described that employ two mass spectrometers connected in parallel as detectors for a single chromatographic system (LC1/MS2) or that employ two liquid chromatographs and two mass spectrometers in a column-switching arrangement (LC2/MS2). Examples of LC1/MS2 analyses of triacylglycerols (TAGs), sphingolipids, and vitamin D are given, as well as an example of an LC2/MS2 experiment that is used to perform analysis of both polar and non-polar lipids in a total lipid extract.  相似文献   

8.
This paper reports the effect of transfer line (TL) internal diameter (i.d.) on gas chromatographic separation characteristics such as efficiency and speed, when a multicapillary (MC) column is used for speciation analysis of mercury. Five different TL consisting of fused-silica capillaries with 0.15, 0.20, 0.25, 0.32, and 0.53 mm i.d. are compared. The separation efficiency and total chromatographic run time are critically affected by the i.d. of the TL. Narrow capillaries (i.d.0.20 mm) produce minimum peak dispersion whereas wide capillaries result in narrow peaks and shorter chromatographic analysis times. A thermodynamic approach is proposed to describe the motion of the analytes through the separation column and TL. The model provides good agreement with the experimental data for high pressures (35 psig) and wide TL (0.25 mm i.d.).Dedicated to the memory of Wilhelm Fresenius  相似文献   

9.
Mass spectrometers equipped with atmospheric pressure ion sources (API-MS) have been designed to be interfaced with liquid chromatographs (LC) and have rarely been connected to gas chromatographs (GC). Recently, we introduced a heated nebulizer microchip and showed its potential to interface liquid microseparation techniques and GC with API-MS. This study demonstrates the feasibility of GC-microchip atmospheric pressure photoionization-tandem mass spectrometry (GC-μAPPI-MS/MS) in the analysis of underivatized anabolic steroids in urine. The APPI microchip provides high ionization efficiency and produces abundant protonated molecules or molecular ions with minimal fragmentation. The feasibility of GC-μAPPI-MS/MS in the analysis of six selected anabolic steroids in urine samples was studied with respect to intra-batch repeatability, linearity, linear range, and limit of detection (LOD). The method showed good sensitivity (LODs 0.2-1 ng/mL), repeatability (relative standard deviation<10%), and linearity (regression coefficient≥0.9995) and, therefore, high potential for the analysis of anabolic steroids. Quantitative performance of the method was tested with two authentic urine samples, and the results were in good agreement with those obtained with conventional GC-electron ionization-MS after derivatization.  相似文献   

10.
A three-channel transmission line (TL) impedance model is proposed to address the charge transport behavior of molecular functionalized mesoscopic oxide electrodes at different bias conditions. A full general solution of the three-channel TL for the system is provided in this paper. Selected experimental results of impedance spectroscopy of mesoscopic Al2O3 and TiO2 networks, covered with a monolayer of Ru complex cis-RuLL'(NCS)2 (L = 2,2'-bipyridyl-4,4'-dicarboxylic acid, L' = 4,4'-dinonyl-2,2'-bipyridyl) (Z907), are briefly discussed. It shows that the model constitutes a useful tool for characterizing nanoporous electrodes functionalized with organic conducting layers in the surface. The model makes it possible to determine the separate conductivity of substrate oxide and molecular layer, and interfacial charge transfer, in the functionalized nanostructured electrodes.  相似文献   

11.
The 0‐1 model‐inverse method of nonequilibrium nonlinear chromatography was developed to simultaneously determine the isotherm parameters and the lumped mass transfer coefficients of the two‐component systems in RPLC. By comparing the simulated elution curves with experimental curves with regard to profiles and areas, the suitable isotherm parameters and the lumped mass transfer coefficients were obtained with the 0‐1 model‐inverse method. With a solute cell unit width of cm, the average errors of the peak areas were 0.178% for one component and ?0.40% for two components, and the numerical diffusions of the 0‐1 model for the contribution to band broadening may be negligible. In addition, the results showed that the lumped mass transfer coefficients decrease as the solute concentration increases. The 0‐1 model‐inverse method has not only the advantages of high calculation speed (less than 10 min for one‐component systems or approximately 3 h for two‐component systems using an ordinary computer) and high accuracy in simultaneously obtaining thermodynamic parameters and kinetic parameters of two‐component systems, but this method also possesses the potential to optimally design and control the time‐variant preparative chromatographic system due to the thermodynamic state recursion and the Lagrangian‐Eulerian presentation of the 0‐1 model.  相似文献   

12.
Two-layer heterostructures with a high yield of charged current carriers were obtained and investigated. The heterostructures comprised monolayer dispersions of MoS2 in polyvinyl alcohol as the lower layer and the upper p-, n-, or bipolar transport layer (TL). It was found that dark conductivity of the two-layer heterostructures increased considerably compared with the conductivity of reference samples based on TL but containing no MoS2. After excitation from the TL side, maximum photoelectric sensitivity was obtained where TL long-wave absorption decreased and there was a high concentration of TL excited states at the interface that interacted with the surface of MoS2 particles. This interaction quenched the luminescence of TL transport centers and led to the photogeneration of both positively and negatively charged current carriers at the interface. Luminescence quenching could be of 50–60% at high MoS2 contents in the lower layer (90–100 wt %). This was evidence that the contact area of MoS2 particles with the polymeric transport layer exceeded the geometric interface dimensions and the interface had a relief surface (was fairly thick). It was found that the donor-acceptor properties of both MoS2 and the polymeric TL were very important for the photogeneration of charge carriers at the interface. When the MoS2 content in the lower layer was maximum, the effectiveness of the accumulation of minority carriers increased because of the formation of an alternative transport network associated with MoS2 particles. The conclusion was drawn that the photogeneration of charges at the interface resulted from the phototransfer of electrons between MoS2 particles and TL excited states.  相似文献   

13.
We investigate the possibility of Turing-type pattern formation during friction. Turing or reaction-diffusion systems describe variations of spatial concentrations of chemical components with time due to local chemical reactions coupled with diffusion. Turing systems can lead to a variety of complex spatial patterns evolving with time. During friction, the patterns can form at the sliding interface due to the mass transfer (diffusion), heat transfer, various tribochemical reactions, and wear. We present simulation data showing the possibility of such pattern formation. On the other hand, existing experimental data suggest that in situ tribofilms can form at the frictional interface due to a variety of friction-induced chemical reactions (oxidation, the selective transfer of Cu ions, etc.). These tribofilms as well as other frictional "secondary structures" can form various patterns (islands or honeycomb domains). This mechanism of pattern formation can be attributed to the Turing systems.  相似文献   

14.
Capillary isotachophoresis with coupled columns provides efficient means for rapid electrophoretic analysis of sample volumes of up to 10 μl or more. Commercially available instruments are commonly equipped with conductivity and UV absorbance detectors; however, their on-line coupling with electrospray mass spectrometry is highly desirable. In this work we have modified the commercial coupled column isotachophoresis system for direct connection to an ion trap mass spectrometer. The design included attachment of an elution block with a short capillary transfer line directing the separated zones towards the mass spectrometer. The modification further included separation of the injection and electrode blocks from the separation columns by semipermeable membranes eliminating unwanted fluid movements in the wide bore fluoropolymer separation capillaries. Fused silica capillaries with varying internal diameter were connected as a transfer line between the elution block and mass spectrometer. The transfer line served also as the ESI tip of the sheathless electrospray interface. During the analysis the first, wide bore preseparation capillary with 0.8 mm internal diameter served for removal of the bulk sample components and preseparation of the potentially interfering analytes. After the electronic column switching the separation was finished in a 0.3 mm internal diameter capillary and the separated ITP zones were transferred in-line by a spray liquid towards the mass spectrometer. The instrumentation was tested for determination of vitamins in whole blood analysis and separation of tryptic peptides.  相似文献   

15.
Two highly sensitive thermoluminescent (TL) materials (Al2O3:C and CaSO4:Tm) were investigated for environmental monitoring. We compared their response to low and to high linear energy transfer (LET) radiations in order to develop a two-element TL system.The relative TL efficiency for α-particle irradiation as compared to γ-exposure was about 0.04 and 0.5 for Al2O3:C and CaSO4:Tm, respectively. Measurements of external environmental radiation doses in an international balloon experiment were performed with our highly-sensitive TL system having various sensitivities to low and to high LET radiations.  相似文献   

16.
Two kinds (20 each) of gamma-irradiated (0, 5, and 10 kGy) tea samples, blended powders and packed in sachets (tea bags), were investigated using photostimulated luminescence (PSL), thermoluminescence (TL), and electron spin resonance spectroscopy (ESR) to identify their irradiation status. PSL-based rapid screening was possible for all the control samples except for one packed and two powdered samples. The irradiated samples presented a good dose-dependent PSL count except two powdered samples with very low PSL sensitivity. TL analysis provided the most reliable results, in which all the irradiated samples were identified using a well-defined high-intensity TL glow curve in a temperature range of 150–250 °C. The TL results were also confirmed by determining the TL ratio (TL1/TL2), which was <0.1 in all the non-irradiated samples and >0.1 in the irradiated ones. ESR spectroscopy was effective for only 3 packed and 6 powdered samples showing the radiation-induced cellulosic and sugar radical signals, respectively.
Figure
TL-based detection of irradiated teas  相似文献   

17.
Electrophoretic separators, in which a porous membrane is used as a contactor, offer the possibility to scale up electrophoresis as well as to extend the field of application of electrodialysis to fractionate polyamino acids, peptides or small proteins for instance. This paper deals with the study of the mass transfer mechanisms involved in such electroseparation processes. On one hand, a theoretical approach is carried out. The different contributions to the mass transfer are considered in order to establish a relationship providing the solute concentration as function of the main parameters of the system, i.e. the operating conditions and the membrane, buffer and solute characteristics. In this expression, a partition coefficient is used to represent the interactions taking place at the membrane–solution interface. Then, an experimental study is performed with different representative solutes using a prototype apparatus in order to determine the dependence of the solvent and solute transfer with respect to the operating and physicochemical parameters of the system. The experimental results show the existence of a limiting electro-osmotic flux, the origin of which is explained. Then the partition coefficient is determined for any set of conditions by fitting the variations of the solute concentration calculated by the model with experimental ones. The dependence of the partition coefficient with respect to the solute and buffer characteristics, together with that of the transmission coefficient obtained during filtration experiments, shows that the main limitation with respect to the mass transfer is due to electrostatic interactions taking place at the membrane–solution interface.  相似文献   

18.
将有机相和水相分别灌入双通道玻璃微米管θ管中的一个管中,利用θ管表面的亲水特征,在灌有有机相的微米管口附近形成微-液/液界面.利用循环伏安法研究了电荷在这种微-液/液界面上的转移反应,包括简单离子(四甲基铵离子TMA+)转移、加速离子转移(DB18C6加速K+离子)和电子转移(二茂铁/铁氰化钾+亚铁氰化钾体系)反应过程.结果表明,这种双通道微米管所得到的微-液/液界面具有不对称扩散场的特性.此装置是目前最简单的可用于研究液/液界面上的电荷转移反应的装置之一,即所谓的可进行"无溶液"液/液界面电化学及电分析化学研究的装置.  相似文献   

19.
The construction and evaluation of an interface for two-dimensional gas chromatography is described. The interface consists of commercially available components and is attachable to available gas chromatographs without any major modifications. The interface has been constructed so as to permit “heartcutting” as well as solute band concentration. Trapping is performed in a simple cold trap of fused silica. Flow switching is accomplished by Deans switching. Factors of the over-all chromatographic performance are examined.  相似文献   

20.
A two-dimensional gas chromatograph is described for the analysis of volatile compounds. The chromatographic system consists of two separate chromatographs linked together with an interface containing an intermediate trap. The trap is cooled with nitrogen (?150°C) and a cryogradient is created inside the trap enclosure. The sample is reinjected during controlled (chromatographic) conditions, using thermostated air. The sample components are eluted from the trap as narrow symmetrical peaks; the shape and width of the peaks eluted do not noticeably affect the subsequent chromatography. The enrichment of n-butane in the trap is quantitative in the range 10?10 – 10?5 g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号