首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C((3)P) + OH(X (2)Pi) --> CO(X (1)Sigma(g)(+)) + H((2)S) reaction has been investigated by ab initio electronic structure calculations of the X(2)A' state based on the multireference (MR) internally contracted single and double configuration interaction (SDCI) method plus Davidson correction (+Q) using Dunning aug-cc-pVQZ basis sets. In particular, the multireference space is taken to be a complete active space (CAS). Improvement over previously proposed potential energy surfaces for HCO/COH is obtained in the sense that present surface describes also the potential part where the CO interatomic distance is large. A large number of geometries (around 2000) have been calculated and analytically fitted using the reproducing kernel Hilbert space (RKHS) method of Ho and Rabitz both for the two-body and three-body terms following the many-body decomposition of the total electronic energies. Results show that the global reaction is highly exothermic ( approximately 6.4 eV) and barrierless (relative to the reactant channel), while five potential barriers are located on this surface. The three minima and five saddle points observed are characterized and found to be in good agreement with previous work. The three minima correspond to the formation of HCO and COH complexes and to the CO + H products, with the COH complex being a metastable minimum relative to the product channel. The five saddle points correspond to potential barriers for both the dissociation/formation of HCO and COH into/from CO + H, to barriers for the isomerization of HCO into COH and to barriers for the inversion of HCO and COH through their respective linear configuration.  相似文献   

2.
Global analytic potential energy surfaces for O((3)P) + H(2)O((1)A(1)) collisions, including the OH + OH hydrogen abstraction and H + OOH hydrogen elimination channels, are presented. Ab initio electronic structure calculations were performed at the CASSCF + MP2 level with an O(4s3p2d1f)/H(3s2p) one electron basis set. Approximately 10(5) geometries were used to fit the three lowest triplet adiabatic states corresponding to the triply degenerate O((3)P) + H(2)O((1)A(1)) reactants. Transition state theory rate constant and total cross section calculations using classical trajectories to collision energies up to 120?kcal mol(-1) (~11?km s(-1) collision velocity) were performed and show good agreement with experimental data. Flux-velocity contour maps are presented at selected energies for H(2)O collisional excitation, OH + OH, and H + OOH channels to further investigate the dynamics, especially the competition and distinct dynamics of the two reactive channels. There are large differences in the contributions of each of the triplet surfaces to the reactive channels, especially at higher energies. The present surfaces should support quantitative modeling of O((3)P) + H(2)O((1)A(1)) collision processes up to ~150?kcal mol(-1).  相似文献   

3.
We describe fully quantum, time-independent scattering calculations of the F+H2-->HF+H reaction, concentrating on the HF product rotational distributions in v'=3. The calculations involved two new sets of ab initio potential energy surfaces, based on large basis set, multireference configuration-interaction calculations, which are further scaled to reproduce the experimental exoergicity of the reaction. In addition, the spin-orbit, Coriolis, and electrostatic couplings between the three quasidiabatic F+H2 electronic states are included. The calculated integral cross sections are compared with the results of molecular beam experiments. At low collision energies, a significant fraction of the reaction is due to Born-Oppenheimer forbidden, but energetically allowed reaction of F in its excited (2P 1/2) spin-orbit state. As the collision energy increases, the Born-Oppenheimer allowed reaction of F in its ground (2P 3/2) spin-orbit state rapidly dominates. Overall, the calculations agree reasonably well with the experiment, although there remains some disagreement with respect to the degree of rotational excitation of the HF(v'=3) products as well as with the energy dependence of the reactive cross sections at the lowest collision energies.  相似文献   

4.
The three lowest (1A('), 2A('), and 1A(')) adiabatic potential energy surfaces (PESs) for the Br((2)P) + H(2) reactive system have been computed based on the multi-reference configuration interaction (MRCI) method including the Davidson's correction with a large basis set. These three adiabatic PESs have been transformed to a diabatic representation, leading to four coupling potentials. In addition, the spin-orbit matrix elements were also obtained using the Breit-Pauli Hamiltonian and the unperturbed MRCI wavefunctions in the Br + H(2) channel and the transition state region. Consequently, six coupling potentials were obtained and their characteristics were extensively discussed. Nonadiabatic quantum dynamics calculations for this system have been realized with these realistic diabatic potentials instead of previous semi-empirical diabatic potentials. Based on two-state model nonadiabatic calculations for the Br((2)P(3∕2), (2)P(1∕2)) + H(2) reaction, the Br((2)P(1∕2)) + H(2) reaction was found to show less reactivity than the Br((2)P(3∕2)) + H(2) reaction at collision energies beyond the threshold of the Br((2)P(3∕2)) + H(2) reaction. Our results are consistent with the previous studies on the XH(2) (X = F, Cl) system, which indicate that the adiabatically forbidden channel is dominant at low energies in the open-shell halogen atom plus H(2) reactions.  相似文献   

5.
Quantum mechanical wave packet calculations are carried out for the H((2)S) + FO((2)II) --> OH((2)II) + F((2)P) reaction on the adiabatic potential energy surface of the ground (3)A' triplet state. The state-to-state and state-to-all reaction probabilities for total angular momentum J = 0 have been calculated. The probabilities for J > 0 have been estimated from the J = 0 results by using J-shifting approximation based on a capture model. Then, the integral cross sections and initial state-selected rate constants have been calculated. The calculations show that the initial state-selected reaction probabilities are dominated by many sharp peaks. The reaction cross section does not manifest any sharp oscillations and the initial state-selected rate constants are sensitive to the temperature.  相似文献   

6.
Full quantum state resolved scattering of the F atom reaction with H(2)(j=0) and H(2)(j=1) was investigated at the collision energies of 0.19 and 0.56 kcalmol. Dramatic difference between the dynamics for the F+H(2)(j=0,1) reactions at both collision energies have been observed. Forward scattering HF(v(')=2) products have been observed unambiguously for the F+H(2)(j=1) reaction at low collision energies, which was attributed to the Feshbach resonances. This study provides a unique case of reaction resonances involving a rotationally excited reagent.  相似文献   

7.
The dynamics of the O(1D) + HCl --> OH + Cl(2P) reaction are investigated by a crossed molecular beam ion-imaging method and quasiclassical trajectory calculations on the three ab initio potential energy surfaces, the ground 1(1)A' and two excited (1(1)A' and 2(1)A') states. The scattering experiment was carried out at collision energies of 4.2, 4.5, and 6.4 kcal/mol. The observed doubly differential cross sections (DCSs) for the Cl(2P) product exhibit almost no collision energy dependence over this inspected energy range. The nearly forward-backward symmetric DCS indicates that the reaction proceeds predominantly on the ground-state potential energy surface at these energies. Variation of the forward-backward asymmetry with collision energy is interpreted using an osculating complex model. Although the potential energy surfaces obtained by CASSCF-MRCI ab initio calculations exhibit relatively low potential barriers of 1.6 and 6.5 kcal/mol for 1(1)A' and 2(1)A', respectively, the dynamics calculations indicate that contributions of these excited states are small at the collision energies lower than 15.0 kcal/mol. Theoretical DCSs calculated for the ground-state reaction pathway agree well with the observed ones. These experimental and theoretical results suggest that the titled reaction at collision energies less than 6.5 kcal/mol is predominantly via the ground electronic state.  相似文献   

8.
Triplet state mechanism of [2 + 2] photocycloaddition forming a cyclobutane ring from two ethylenes is investigated in the context of photocatalysis. High‐level ab initio calculations are combined with ab initio adiabatic molecular dynamics and ab initio metadynamics for rare events modeling. In a photocatalytic scheme, a reactant reaches the triplet state either via intersystem crossing (ISC) or triplet sensitization. The model system adopts a biradical structure, which represents energy intersection with the ground state. The system either completes cyclization or undergoes fragmentation into two olefinic units. The potential and free energy surfaces of the cyclobutane/ethylenes system are mapped with multireference approaches describing possible reaction pathways. To obtain a full picture of a double bond photoreactivity, ab initio adiabatic dynamical calculations were used to estimate reaction yields and to model the effects of excess energy. The potential use of density functional theory based approaches for [2 + 2] photocycloaddition was investigated for future simulations and design of realistic photocatalytic systems. Dynamical aspects of [2 + 2] photocycloaddition via a triplet state manifold are investigated by combining ab initio multireference methods and ab initio molecular dynamics and metadynamics. The reaction pathways are studied for a model system of two ethylenes forming a cyclobutane ring to provide a basis for further studies on design of photocatalytic systems.  相似文献   

9.
The effect of nonadiabatic transitions through the spin-orbit couplings has been investigated on the fast neutral reaction, O((3)P)+CH(3)-->CH(3)O. Adiabatic potential energies and the spin-orbit coupling terms have been evaluated for the four electronic states of CH(3)O ((2)E, (2)A(2), (4)E, and (4)A(2)) that correlate with the O((3)P)+CH(3) asymptote, as a function of CO distance and OCH angle under the C(3v) symmetry, by ab initio electronic structure calculations using multireference internally contracted single and double excitation configuration interaction method with the 6-311G(2df,2pd) basis sets. Multistate quantum reactive scattering calculations have been carried out with the use of thus obtained potential energies and spin-orbit coupling matrices, based on the generalized R-matrix propagation method. The calculated thermal rate constants show a slight positive dependence on temperature in a range between 50 and 2000 K, supporting the previous experimental results. It is shown that the spin-orbit coupled excited states give rise to reflections over the centrifugal barrier due to the quantum interference. Classical capture calculations yield larger rate constants due to the neglect of quantum reflections. It is concluded that the effect of nonadiabatic transitions is of minor importance on the overall reactivity in this reaction.  相似文献   

10.
Potential energy surface (PES) intersection seams of two or more electronic states from the 1 1A', 2 1A', 3 1A', 1 1A", and 2 1A" states in the C(1D)H2 reactive system are investigated using the internally contracted multireference configuration interaction method and the aug-cc-pVQZ basis set. Intersection seams with energies less than 20 kcal/mol relative to the C(1D) + H2 asymptote are searched systematically, and finally several seam lines (at the linear H-C-H, linear C-H-H, and C(2v), geometries, respectively) and a seam surface (at Cs geometries) are discovered and determined. The minimum energy crossing points on these seams are reported and the influences of the PES intersections, in particular, conical intersections, on the CH2 spectroscopy and the C(1D) + H2 reaction dynamics are discussed. In addition, geometries and energies of the 1 1A2 and 1 1B2 states of methylene biradical CH2 are reported in detail for the first time.  相似文献   

11.
The potential energy surface for the CH + N2 reaction was reexamined with multireference ab initio electronic structure methods employing basis sets up to aug-cc-pvqz. Comparisons with related CCSD(T) calculations were also made. The multireference ab initio calculations indicate significant shortcomings in single reference based methods for two key rate-limiting transition states. Transition state theory calculations incorporating the revised best estimates for the transition state properties provide order of magnitude changes in the predicted rate coefficient in the temperature range of importance to the mechanism for prompt NO formation. At higher temperatures, two distinct pathways make a significant contribution to the kinetics. A key part of the transition state analysis involves a variable reaction coordinate transition state theory treatment for the formation of H + NCN from HNCN. The present predictions for the rate coefficients resolve the discrepancy between prior theory and very recent experimental measurements.  相似文献   

12.
The dynamics of the O(3P) + HCl reaction at hyperthermal collision energies were investigated using the quasiclassical trajectory method. Stationary points on the OClH 3A" and 3A' potential energy surfaces (PESs) were also examined. The lowest transition state leading to OCl + H on the 3A" surface is 2.26 eV above the reagents at the CCSD(T)/cc-pVTZ level of theory. This saddle point is bent and product-like. Direct dynamics calculations at the MP2/cc-pVTZ level of theory were used to investigate the excitation functions for OH + Cl, OCl + H, and O + H + Cl formation. OCl is formed mainly from small-impact-parameter collisions, and the OCl + H excitation function peaks around 5 eV, where it is similar in magnitude to the OH + Cl excitation function. The shape of the OCl + H excitation function is discussed, and features are identified that should be general to hyperthermal collision dynamics.  相似文献   

13.
In this work, we report the construction of potential energy surfaces for the (3)A(') and (3)A(') states of the system O((3)P) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O((3)P) + HBr → OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A(') electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A(') surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A(') and 4.16 kcal/mol for the (3)A(') state.  相似文献   

14.
The gas-phase radical-radical reaction dynamics of ground-state atomic oxygen [O((3)P)] with iso-propyl radicals, (CH(3))(2)CH, were investigated by applying a combination of high-resolution laser-induced fluorescence spectroscopy in a crossed-beam configuration and ab initio calculations. The nascent distributions of OH (X(2)Π: υ' = 0) from the major reaction channel O((3)P) + (CH(3))(2)CH → C(3)H(6) (propene) + OH showed substantial internal excitations with a bimodal feature of low- and high-N' components with neither spin-orbit nor Λ-doublet propensities. Unlike previous kinetic results, proposed to proceed only through the direct H-atom abstraction process, on the basis of the population analysis and comparison with the statistical theory, the title reaction can be described in terms of two competing mechanisms at the molecular level: direct abstraction process and indirect short-lived addition-complex-forming process with a ratio of 1.25?:?1.  相似文献   

15.
The potential energy surface for the reaction of HOCO radicals with hydrogen atoms has been explored using the CCSD(T)/aug-cc-pVQZ ab initio method. Results show that the reaction occurs via a formic acid (HOC(O)H) intermediate, and produces two types of products: H(2)O+CO and H(2)+CO(2). Reaction enthalpies (0 K) are obtained as -102.0 kcalmol for the H(2)+CO(2) products, and -92.7 kcalmol for H(2)O+CO. Along the reaction pathways, there exists a nearly late transition state for each product channel. However, the transition states locate noticeably below the reactant asymptote. Direct ab initio dynamics calculations are also carried out for studying the kinetics of the H+HOCO reaction. At room temperature, the rate coefficient is predicted to be 1.07x10(-10)cm(3) molec(-1) s(-1) with a negligible activation energy E(a)=0.06 kcalmol, and the branching ratios are estimated to be 0.87 for H(2)+CO(2), and 0.13 for H(2)O+CO. In contrast, the product branching ratios have a strong T dependence. The branching ratio for H(2)O+CO could increase to 0.72 at T=1000 K.  相似文献   

16.
A theoretical study of the F(2P) + OH(2Pi) --> HF(1Sigma+) + O(3P) reactive collisions is carried out on a new global potential energy surface (PES) of the ground 3A" adiabatic electronic state. The ab initio calculations are based on multireference configuration interaction calculations, using the aug-cc-pVTZ extended basis sets of Dunning et al. A functional representation of the PES shows no nominal barrier to reaction, contrary to previous results by others. Wave packet and quasiclassical trajectory calculations have been performed for this PES to study the F + OH(v = 0,j) reactive collision. The comparison was performed at fixed and constant values of the total angular momentum from 0 to 110 and relative translational energy up to 0.8 eV. The reaction presents a dynamical barrier, essentially due to the zero-point energy for the bending vibration near the saddle point. This determines two different reaction mechanisms. At energies higher than approximately 0.125 eV the reaction is direct, while below that value it is indirect and mediated by heavy-light-heavy resonances. Such resonances, also found in the simulations of the photodetachment spectrum of the triatomic anion, manifest themselves in the quasiclassical simulations, too, where they are associated to periodic orbits.  相似文献   

17.
Potential energy curves (PECs) of the symmetric and asymmetric bent S(2)O molecules are constructed using the configuration-based multireference second order perturbation theory and multireference configuration interaction with single and double excitations. Based on the PECs, the equilibrium structures of the ground state and several low-lying excited states, as well as the vertical and adiabatic transition energies, are obtained. Furthermore, avoided crossings and intersections displayed on the PECs are studied. The dissociation of states for the asymmetric bent S(2)O, especially the predissociative of the excited (~)C1A' state, is also discussed in detail. According to our calculations, the predissociation limit of (~)C1A' is found to be located in the vicinity of 2(6) or 2(5) (reckoning in the zero-point energy revision) S-S stretching vibration level, which is in good agreement with the available experimental data.  相似文献   

18.
A quasi-classical study of the endoergic Au(+)((1)S) + H(2)(X(1)Σ(g)(+)) → AuH(+) ((2)Σ(+)) + H((2)S) reaction, and isotopic variants, is performed to compare with recent experimental results [F. Li, C. S. Hinton, M. Citir, F. Liu, and P. B. Armentrout, J. Chem. Phys. 134, 024310 (2011)]. For this purpose, a new global potential energy surface has been developed based on multi-reference configuration interaction ab initio calculations. The quasi-classical trajectory results show a very good agreement with the experiments, showing the same trends for the different isotopic variants of the hydrogen molecule. It is also found that the total dissociation into three fragments, Au(+)+H+H, is the dominant reaction channel for energies above the H(2) dissociation energy. This results from a well in the entrance channel of the potential energy surface, which enhances the probability of H-Au-H insertion.  相似文献   

19.
We report a dynamics study of the reaction N((2)D) + H(2) (v=0, j=0-5) --> NH + H using the time-dependent quantum wave packet method and a recently reported single-sheeted double many-body expansion potential energy surface for NH(2)(1(2)A' ') which has been modeled from accurate ab initio multireference configuration-interaction calculations. The calculated probabilities for (v=0, j=0-5) are shown to display resonance structures, a feature also visible to some extent in the calculated total cross sections for (v=0, j=0). A comparison between the calculated centrifugal-sudden and coupled-channel reaction probabilities validate the former approximation for the title system. Rate constants calculated using a uniform J-shifting scheme and averaged over a Boltzmann distribution of rotational states are shown to be in good agreement with the available experimental values. Comparisons with other theoretical results are also made.  相似文献   

20.
Ab initio calculations were performed to investigate photoinduced transfers among the ground state (GS) and two metastable states (MS1 and MS2) of [Fe(CN)5NO]2-. We obtained the global potential energy surface of the electronic ground state by a scheme of multireference singly and doubly excited configuration interaction followed by a Davidson-type quadruple correction (MRSDCI+Q). The ground state surface has three local minima corresponding to GS, MS1, and MS2. The character of bond between Fe and the nitrosyl group are discussed. We carried out calculations of the lower five electronic excited states by MRSDCI+Q. The main configurations of these lower five excited states were represented by the dFe-->pi*NO transition accompanied by considerable back-donation. The potential energy surfaces of the six states, including the ground state, were obtained by state averaged complete active space self-consistent field calculations. The surfaces have several conical intersections and avoided crossings in the reaction pathway. The photoinduced transfers among GS, MS1, and MS2 are caused by the nonadiabatic effect near these crossings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号