首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a study of the electronic dissociation energy of the water dimer using quantum Monte Carlo techniques. We have performed variational quantum Monte Carlo and diffusion quantum Monte Carlo (DMC) calculations of the electronic ground state of the water monomer and dimer using all-electron and pseudopotential approaches. We have used Slater-Jastrow trial wave functions with B3LYP type single-particle orbitals, into which we have incorporated backflow correlations. When backflow correlations are introduced, the total energy of the water monomer decreases by about 4-5 mhartree, yielding a DMC energy of -76.428 30(5) hartree, which is only 10 mhartree above the experimental value. In our pseudopotential DMC calculations, we have compared the total energies of the water monomer and dimer obtained using the locality approximation with those from the variational scheme recently proposed by Casula [Phys. Rev. B 74, 161102(R) (2006)]. The time step errors in the Casula scheme are larger, and the extrapolation of the energy to zero time step always lies above the result obtained with the locality approximation. However, the errors cancel when energy differences are taken, yielding electronic dissociation energies within error bars of each other. The dissociation energies obtained in our various all-electron and pseudopotential calculations range between 5.03(7) and 5.47(9) kcalmol and are in good agreement with experiment. Our calculations give monomer dipole moments which range between 1.897(2) and 1.909(4) D and dimer dipole moments which range between 2.628(6) and 2.672(5) D.  相似文献   

2.
The effect of using the transcorrelated variational Monte Carlo (TC-VMC) approach to construct a trial function for fixed node diffusion Monte Carlo (DMC) energy calculations has been investigated for the first-row atoms, Li to Ne. The computed energies are compared with fixed node DMC energies obtained using trial functions constructed from Hartree-Fock and density functional levels of theory. Despite major VMC energy improvement with TC-VMC trial functions, no improvement in DMC energy was observed using these trial functions for the first-row atoms studied. The implications of these results on the nodes of the trial wave functions are discussed.  相似文献   

3.
All-electron fixed-node diffusion quantum Monte Carlo energies of the two lowest-lying states of C, N, O, F, and Ne atoms are reported. The Slater-Jastrow form is used as the trial wave function. We will use single- and multideterminant wave functions as the Slater part. The single-determinant wave function has been computed by the Hartree-Fock method and the multideterminant wave functions have been computed by the complete active space self-consistent field, configuration interaction with single and double excitation, configuration interaction with single, double, triple, and quadruple excitation and second-order configuration interaction. For the ground- and first excited states, the multideterminant wave functions have computed more than 99% of the correlation energy. Significant improvements have been achieved using the backflow transformations and up to 99.8% of the correlation energy has been recovered. A very good agreement with the experimental data has been obtained for the excitation energies.  相似文献   

4.
This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 +/- 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 +/- 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 +/- 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 +/- 0.5 kcal/mol).  相似文献   

5.
All-electron variational and diffusion quantum Monte Carlo calculations of the ground state energies of the first row atoms (from Li to Ne) are reported. The authors use trial wave functions of four types: single-determinant Slater-Jastrow wave functions, multideterminant Slater-Jastrow wave functions, single-determinant Slater-Jastrow wave functions with backflow transformations, and multideterminant Slater-Jastrow wave functions with backflow transformations. At the diffusion quantum Monte Carlo level and using their multideterminant Slater-Jastrow wave functions with backflow transformations, they recover 99% or more of the correlation energies for Li, Be, B, C, N, and Ne, 97% for O, and 98% for F.  相似文献   

6.
A simple scheme is described for introducing the correct cusps at nuclei into orbitals obtained from Gaussian basis set electronic structure calculations. The scheme is tested with all-electron variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods for the Ne atom, the H2 molecule, and 55 molecules from a standard benchmark set. It greatly reduces the variance of the local energy in all cases and slightly improves the variational energy. This scheme yields a general improvement in the efficiency of all-electron VMC and DMC calculations using Gaussian basis sets.  相似文献   

7.
New data are reported for the mass-spectrometry fragmentation patterns of helium clusters, either pure or containing a Ne or an Ar atom. The patterns for He(n)+ and Ar+He(n) show clear evidence of structure, while those of Ne+He(n) do not. To better understand the surprising result for the Ne+He(n) fragments, diffusion quantum Monte Carlo (DMC) calculations of the energies and structural properties of these ions were performed using a diatomics-in-molecule (DIM) parametrization of the potential energy. Using DIM for electronic energy evaluation allows us to sample 10(9) configurations even for a cluster as large as Ne+He14. The results of the DMC calculation are very surprising. For n > 7, the DMC random walkers rarely venture within 100 cm(-1) of the minimum potential energy. Analysis of the resulting particle density distributions shows that the zero-point energy does more than spread the wave function around the potential-energy minima, resulting in very diffuse wave functions. For some of the clusters the quantum effects nearly exclude the region of the potential minimum from the overall wave function. An important result of this effect is that the incremental bonding energy of the nth helium atom varies quite smoothly with n, for n > 5. This eliminates the expected shell structure and explains the lack of magic-number-type features in the data.  相似文献   

8.
Variational Monte Carlo (VMC) and fixed-node diffusion Monte Carlo (DMC) calculations are performed for S4. The effect of single- and multireference trial functions, as well as choice of orbitals, is investigated for its effect on the quality of the Monte Carlo estimates. Estimates of symmetric (two S2 molecules) and asymmetric (S atom and S3 molecule) bond dissociation are reported. The conformational change of S4 from C2v to D2h defines a double-well potential and is also estimated. Multireference DMC with natural orbitals (DMC/NO) estimates the energy of the conformational change as 1.20(20) kcal/mol; the dissociation of the long S-S single bond is estimated at 21.1(1.3) kcal/mol, and the asymmetric bond energy is estimated as 53.2(2.4) kcal/mol. An estimate of the total atomization energy using multireference DMC/NO gives a value of 219.5(2.2) kcal/mol. The relative quality of result and implications for simplified trial function design are discussed.  相似文献   

9.
We report calculations of the ground state energy and binding curve of the chromium dimer using the variational and diffusion quantum Monte Carlo (VMC and DMC) methods. We examined various single‐determinant and multideterminant wavefunctions multiplied by a Jastrow factor as a trial/guiding wavefunction for VMC/DMC. The molecular orbitals in the single determinants were calculated using restricted or unrestricted Hartree–Fock or density functional theory (DFT) calculations where five commonly used local (SVWN5), semilocal (PW91 and BLYP), and hybrid (B1LYP and B3LYP) functionals were examined. The multideterminant expansions were obtained from the generalized valence bond and (truncated) unrestricted configuration interaction with single and double excitations (UCISD) methods. We also examined a UCISD wavefunction in which UCISD expansions were added to the UB3LYP single‐determinant reference, and their coefficients were optimized at the VMC level. In addition to the wavefunction dependence, the effects of pseudopotentials and backflow transformation were also investigated. The UB3LYP single‐determinant and multideterminant wavefunctions were found to give the variationally best DMC energies within the framework of single‐determinant and multideterminants, respectively, though both the DMC energies were higher than twice the DMC atomic energy. Some of the VMC binding curves show a flat or quite shallow well bottom, which gets recovered deeper by DMC. All the DMC binding curves have a minimum indicating a bound state, but the unrestricted ones overestimate the equilibrium bond length. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

10.
We report variational and diffusion quantum Monte Carlo (VMC and DMC) calculations of the dissociation energies of the three-electron hemibonded radical cationic dimers of He, NH3, H2O, HF, and Ne. These systems are particularly difficult for standard density-functional methods such as the local-density approximation and the generalized gradient approximation. We have performed both all-electron (AE) and pseudopotential (PP) calculations using Slater-Jastrow wave functions with Hartree-Fock single-particle orbitals. Our results are in good agreement with coupled-cluster CCSD(T) calculations. We have also studied the relative stability of the hemibonded and hydrogen-bonded water radical dimer isomers. Our calculations indicate that the latter isomer is more stable, in agreement with post-Hartree-Fock methods. The excellent agreement between our AE and PP results demonstrates the high quality of the PPs used within our VMC and DMC calculations.  相似文献   

11.
Diffusion Monte Carlo (DMC) calculations are performed on the monocyclic and bicyclic forms of m-benzyne, which are the equilibrium structures at the CCSD(T) and CCSD levels of coupled cluster theory. We employed multiconfiguration self-consistent field trial wave functions which are constructed from a carefully selected eight-electrons-in-eight-orbitals complete active space [CAS(8,8)], with configuration state function coefficients that are reoptimized in the presence of a Jastrow factor. The DMC calculations show that the monocyclic structure is lower in energy than the bicyclic structure by 1.9(2) kcal/mole, which is in excellent agreement with the best coupled cluster results.  相似文献   

12.
The nodal structures of atomic wave functions based on a product of spatial orbitals, namely, restricted, unrestricted, and generalized valence bond wave functions, are shown to be equivalent. This result is verified by fixed node-diffusion Monte Carlo simulations for atoms up to Ne. Also for a molecular system, Li(2) at the equilibrium geometry, a multideterminantal generalized valence bond wave function does not improve the nodal surfaces of a restricted Hartree-Fock wave function.  相似文献   

13.
On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of orbitals, as well as the backflow transformation, is studied. The Slater-Jastrow DMC algorithm gives BDEs of 359.1±0.12 kJ/mol for HB?H, 410.5±0.50 kJ/mol for HOB-OH, 357.8±1.46 kJ/mol for ClB-Cl, and 504.5±0.96 kJ/mol for B-Cl using B3PW91 orbitals and similar BDEs when B3LYP orbitals are used. DMC with backflow corrections (BF-DMC) gives a HB-H BDE of 369.9±0.12 kJ/mol which is close to one of the available experimental value (375.8 kJ/mol). In the case of HOB-OH BDE, the BF-DMC calculation is 446.0±1.84 kJ/mol that is closer to the experimental BDE. The BF-DMC BDE for ClB-Cl is 343.2±2.34 kJ/mol and the BF-DMC B-Cl BDE is 523.3±0.33 kJ/mol, which are close to the experimental BDEs, 341.9 and 530.0 kJ/mol, respectively.  相似文献   

14.
We report diffusion quantum Monte Carlo (DMC) calculations of the equilibrium dissociation energy D(e) of the water dimer. The dissociation energy measured experimentally, D(0), can be estimated from D(e) by adding a correction for vibrational effects. Using the measured dissociation energy and the modern value of the vibrational energy Mas et al., [J. Chem. Phys. 113, 6687 (2000)] leads to D(e)=5.00+/-0.7 kcal mol(-1), although the result Curtiss et al., [J. Chem. Phys. 71, 2703 (1979)] D(e)=5.44+/-0.7 kcal mol(-1), which uses an earlier estimate of the vibrational energy, has been widely quoted. High-level coupled cluster calculations Klopper et al., [Phys. Chem. Chem. Phys. 2, 2227 (2000)] have yielded D(e)=5.02+/-0.05 kcal mol(-1). In an attempt to shed new light on this old problem, we have performed all-electron DMC calculations on the water monomer and dimer using Slater-Jastrow wave functions with both Hartree-Fock approximation (HF) and B3LYP density functional theory single-particle orbitals. We obtain equilibrium dissociation energies for the dimer of 5.02+/-0.18 kcal mol(-1) (HF orbitals) and 5.21+/-0.18 kcal mol(-1) (B3LYP orbitals), in good agreement with the coupled cluster results.  相似文献   

15.
A series of basis sets and configuration interaction (CI ) wave functions, both of which were constructed so as to systematically approach to the complete set limit and the full CI limit, were used for the ground state of Ne. These calculations yielded an estimated correlation energy of ?0.3891 au, which is 99.6% of a recent theoretical estimate of ?0.3905 au. The CI value, ?0.3821 au, was obtained by SDCI calculation with seven reference configurations by using Slater-type orbitals (STO s) from s to h functions. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
We consider the use in quantum Monte Carlo calculations of two types of valence bond wave functions based on strictly localized active orbitals, namely valence bond self-consistent-field and breathing-orbital valence bond wave functions. Complemented by a Jastrow factor, these Jastrow-valence-bond wave functions are tested by computing the equilibrium well depths of the four diatomic molecules C(2), N(2), O(2), and F(2) in both variational Monte Carlo and diffusion Monte Carlo. We show that it is possible to design compact wave functions based on chemical grounds that are capable of describing both static and dynamic electron correlations. These wave functions can be systematically improved by inclusion of valence bond structures corresponding to additional bonding patterns.  相似文献   

17.
Although it would be tempting to associate the Lewis structures to the maxima of the squared wave function |Psi|2, we prefer in this paper the use of domains of the three-dimensional space, which maximize the probability of containing opposite-spin electron pairs. We find for simple systems (CH4, H2O, Ne, N2, C2H2) domains comparable to those obtained with the electron localization function (ELF) or by localizing molecular orbitals. The different domains we define can overlap, and this gives an interesting physical picture of the floppiness of CH5+ and of the symmetric hydrogen bond in FHF-. The presence of multiple solutions has an analogy with resonant structures, as shown in the trans-bent structure of Si2H2. Correlated wave functions were used (MCSCF or Slater-Jastrow) in the Variational Quantum Monte Carlo framework.  相似文献   

18.
We report results of two quantum Monte Carlo methods -- variational Monte Carlo and diffusion Monte Carlo -- on the potential energy curve of the helium dimer. In contrast to previous quantum Monte Carlo calculations on this system, we have employed trial wave functions of the Slater-Jastrow form and used the fixed node approximation for the fermion nodal surface. We find both methods to be in excellent agreement with the best theoretical results at short range. In addition, the diffusion Monte Carlo results give very good agreement across the whole potential energy curve, while the Slater-Jastrow wave function fails to bind the dimer at all.  相似文献   

19.
The equilibrium properties of classical Lennard-Jones (LJ38) versus quantum Ne38 Lennard-Jones clusters are investigated. The quantum simulations use both the path-integral Monte Carlo (PIMC) and the recently developed variational-Gaussian wave packet Monte Carlo (VGW-MC) methods. The PIMC and the classical MC simulations are implemented in the parallel tempering framework. The classical heat capacity Cv(T) curve agrees well with that of Neirotti et al. [J. Chem. Phys. 112, 10340 (2000)], although a much larger confining sphere is used in the present work. The classical Cv(T) shows a peak at about 6 K, interpreted as a solid-liquid transition, and a shoulder at approximately 4 K, attributed to a solid-solid transition involving structures from the global octahedral (Oh) minimum and the main icosahedral (C5v) minimum. The VGW method is used to locate and characterize the low energy states of Ne38, which are then further refined by PIMC calculations. Unlike the classical case, the ground state of Ne38 is a liquidlike structure. Among the several liquidlike states with energies below the two symmetric states (Oh and C5v), the lowest two exhibit strong delocalization over basins associated with at least two classical local minima. Because the symmetric structures do not play an essential role in the thermodynamics of Ne38, the quantum heat capacity is a featureless curve indicative of the absence of any structural transformations. Good agreement between the two methods, VGW and PIMC, is obtained. The present results are also consistent with the predictions by Calvo et al. [J. Chem. Phys. 114, 7312 (2001)] based on the quantum superposition method within the harmonic approximation. However, because of its approximate nature, the latter method leads to an incorrect assignment of the Ne38 ground state as well as to a significant underestimation of the heat capacity.  相似文献   

20.
A quantum Monte Carlo method is presented for determining multideterminantal Jastrow-Slater wave functions for which the energy is stationary with respect to the simultaneous optimization of orbitals and configuration interaction coefficients. The approach is within the framework of the so-called energy fluctuation potential method which minimizes the energy in an iterative fashion based on Monte Carlo sampling and a fitting of the local energy fluctuations. The optimization of the orbitals is combined with the optimization of the configuration interaction coefficients through the use of additional single excitations to a set of external orbitals. A new set of orbitals is then obtained from the natural orbitals of this enlarged configuration interaction expansion. For excited states, the approach is extended to treat the average of several states within the same irreducible representation of the pointgroup of the molecule. The relationship of our optimization method with the stochastic reconfiguration technique by Sorella et al. is examined. Finally, the performance of our approach is illustrated with the lowest states of ethene, in particular with the difficult case of the 1(1)B(1u) state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号