首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Acoustic radiation forces offer a means of manipulating particles within a fluid. Much interest in recent years has focussed on the use of radiation forces in microfluidic (or “lab on a chip”) devices. Such devices are well matched to the use of ultrasonic standing waves in which the resonant dimensions of the chamber are smaller than the ultrasonic wavelength in use. However, such devices have typically been limited to moving particles to one or two predetermined planes, whose positions are determined by acoustic pressure nodes/anti-nodes set up in the ultrasonic standing wave. In most cases devices have been designed to move particles to either the centre or (more recently) the side of a flow channel using ultrasonic frequencies that produce a half or quarter wavelength over the channel, respectively.It is demonstrated here that by rapidly switching back and forth between half and quarter wavelength frequencies - mode-switching - a new agglomeration position is established that permits beads to be brought to any arbitrary point between the half and quarter-wave nodes. This new agglomeration position is effectively a position of stable equilibrium. This has many potential applications, particularly in cell sorting and manipulation. It should also enable precise control of agglomeration position to be maintained regardless of manufacturing tolerances, temperature variations, fluid medium characteristics and particle concentration.  相似文献   

2.
Modelling of particle paths passing through an ultrasonic standing wave   总被引:3,自引:0,他引:3  
Townsend RJ  Hill M  Harris NR  White NM 《Ultrasonics》2004,42(1-9):319-324
Within an ultrasonic standing wave particles experience acoustic radiation forces causing agglomeration at the nodal planes of the wave. The technique can be used to agglomerate, suspend, or manipulate particles within a flow. To control agglomeration rate it is important to balance forces on the particles and, in the case where a fluid/particle mix flows across the applied acoustic field, it is also necessary to optimise fluid flow rate. To investigate the acoustic and fluid forces in such a system a particle model has been developed, extending an earlier model used to characterise the 1-dimensional field in a layered resonator. In order to simulate fluid drag forces, CFD software has been used to determine the velocity profile of the fluid/particle mix passing through the acoustic device. The profile is then incorporated into a MATLAB model. Based on particle force components, a numerical approach has been used to determine particle paths. Using particle coordinates, both particle concentration across the fluid channel and concentration through multiple outlets are calculated. Such an approach has been used to analyse the operation of a microfluidic flow-through separator, which uses a half wavelength standing wave across the main channel of the device. This causes particles to converge near the axial plane of the channel, delivering high and low particle concentrated flow through two outlets, respectively. By extending the model to analyse particle separation over a frequency range, it is possible to identify the resonant frequencies of the device and associated separation performance. This approach will also be used to improve the geometric design of the microengineered fluid channels, where the particle model can determine the limiting fluid flow rate for separation to occur, the value of which is then applied to a CFD model of the device geometry.  相似文献   

3.
A procedure is demonstrated to quantitatively evaluate the acoustic radiation forces in microfluidic particle manipulation chambers. Typical estimates of the acoustic pressure and the acoustic radiation force are based on an analytical solution for a simple one-dimensional standing wave pattern. The complexities of a typical microfluidic channel limit the usefulness of this approach. By leveraging finite elements, and a generalized equation for the acoustic radiation force, channel designs can be investigated in two and three dimensions. Calculations and experimental observations in this report and the literature, confirm these claims.  相似文献   

4.
Hill M  Townsend RJ  Harris NR 《Ultrasonics》2008,48(6-7):521-528
Several approaches have been described for the manipulation of particles within an ultrasonic field. Of those based on standing waves, devices in which the critical dimension of the resonant chamber is less than a wavelength are particularly well suited to microfluidic, or "lab on a chip" applications. These might include pre-processing or fractionation of samples prior to analysis, formation of monolayers for cell interaction studies, or the enhancement of biosensor detection capability. The small size of microfluidic resonators typically places tight tolerances on the positioning of the acoustic node, and such systems are required to have high transduction efficiencies, for reasons of power availability and temperature stability. Further, the expense of many microfabrication methods precludes an iterative experimental approach to their development. Hence, the ability to design sub-wavelength resonators that are efficient, robust and have the appropriate acoustic energy distribution is extremely important. This paper discusses one-dimensional modelling used in the design of ultrasonic resonators for particle manipulation and gives example of their uses to predict and explain resonator behaviour. Particular difficulties in designing quarter wave systems are highlighted, and modelling is used to explain observed trends and predict performance of such resonators, including their performance with different coupling layer materials.  相似文献   

5.
The ultrasonic standing-wave manipulation of suspended eukaryotic cells, bacteria and submicron latex or silica particles has been examined here. The different systems, involving plane or tubular ultrasonic transducers and a range of acoustic pathlengths, have been designed to treat suspension volumes of analytical scale i.e. 5 ml to 50 microliters for both sample batch and 'on-line' situations. Frequencies range from 1 to 12 MHz. The influence of secondary cell-cell interaction forces in determining the cell concentration dependence of harvesting efficiency in batch sedimentation systems is considered. Applications of standing wave radiation forces to (1) clarify cell suspensions, (2) enhance particle agglutination immunoassay detection of cells or cellular products and (3) examine and enhance cell-cell interactions in suspension are described.  相似文献   

6.
We are investigating means of handling microparticles in microfluidic systems, in particular localized acoustic trapping of microparticles in a flow-through device. Standing ultrasonic waves were generated across a microfluidic channel by ultrasonic microtransducers integrated in one of the channel walls. Particles in a fluid passing a transducer were drawn to pressure minima in the acoustic field, thereby being trapped and confined at the lateral position of the transducer. The spatial distribution of trapped particles was evaluated and compared with calculated acoustic intensity distributions. The particle trapping was found to be strongly affected by near field pressure variations due to diffraction effects associated with the finite sized transducer element. Since laterally confining radiation forces are proportional to gradients in the acoustic energy density, these near field pressure variations may be used to get strong trapping forces, thus increasing the lateral trapping efficiency of the device. In the experiments, particles were successfully trapped in linear fluid flow rates up to 1mm/s. It is anticipated that acoustic trapping using integrated transducers can be exploited in miniaturised total chemical analysis systems (microTAS), where e.g. microbeads with immobilised antibodies can be trapped in arrays and subjected to minute amounts of sample followed by a reaction, detected using fluorescence.  相似文献   

7.
Ultrasonic manipulation, which uses acoustic radiation forces, is a contactless manipulation technique. It allows the simultaneous handling of single or numerous particles (e.g., copolymer beads, biological cells) suspended in a fluid, without the need for prior localization. Here it is reported on a method for two-dimensional arraying based on the superposition of two in-plane orthogonally oriented standing pressure waves. A device has been built and the experimental results have been compared with a qualitative analytical model. A single piezoelectric transducer is used to excite the structure to vibration, which consists of a square chamber etched in silicon sealed with a glass plate. A set of orthogonally aligned electrodes have been defined on one surface of the piezoelectric. This allows either a quasi-one-dimensional standing pressure field to be excited in one of two directions or if both electrodes are activated simultaneously a two-dimensional pressure field to be generated. Two different operational modes are presented: two signals identical in amplitude and frequency were used to trap particles in oval shaped clumps; two signals with slightly different frequencies to trap particles in circular clumps. The transition between the two operational modes is also investigated.  相似文献   

8.
Microfluidic technology has great advantages in the precise manipulation of micro and nano particles, and the separation of micro and nano particles based on ultrasonic standing waves has attracted much attention for its high efficiency and simplicity of structure. This paper proposes a device that uses three modes of ultrasonic standing waves to continuously separate particles with positive acoustic contrast factor in microfluidics. Three modes of acoustic standing waves are used simultaneously in different parts of the microchannel. According to the different acoustic radiation force received by the particles, the particles are finally separated to the pressure node lines on both sides and the center of the microchannel. In this separation method, initial hydrodynamic focusing and satisfying various equilibrium constraints during the separation process are the key. Through numerical simulation, the resonance frequency of the interdigital transducer, the distribution of sound pressure in the liquid, and the relationship between the interdigital electrode voltage and the output sound pressure are obtained. Finally, the entire separation process in the microchannel was simulated, and the separation of the two particles was successfully achieved. This work has laid a certain theoretical foundation for the rapid diagnosis of diseases in practical applications.  相似文献   

9.
Diversity of biomedical applications of acoustic radiation force   总被引:1,自引:0,他引:1  
  相似文献   

10.
Identification of bio-aerosol particles may be enhanced by size sorting before applying analytical techniques. In this paper, the use of ultrasonic acoustic radiation pressure to continuously size fractionate particles in a moving air stream is described. Separate particle-laden and clean air streams are introduced into a channel and merged under laminar flow conditions. An ultrasonic transducer, mounted flush to one wall of the channel, excites a standing ultrasonic wave perpendicular to the flow of the combined air stream. Acoustic radiation forces on the particles cause them to move transverse to the flow direction. Since the radiation force is dependent upon the particle size, larger particles move a greater transverse distance as they pass through the standing wave. The outlet flow is then separated into streams, each containing a range of particle sizes. Experiments were performed with air streams containing glass microspheres with a size distribution from 2-22 μm, using a centerline air stream velocity of approximately 20 cm/s. An electrostatic transducer operating at a nominal frequency of 50 kHz was used to drive an ultrasonic standing wave of 150 dB in pressure amplitude. The microsphere size distributions measured at the outlet were compared with the predictions of a theoretical model. Experiments and theory show reasonable correspondence. The theoretical model also indicates an optimal partitioning of the particle-laden and clean air inlet streams.  相似文献   

11.
Holwill IL 《Ultrasonics》2000,38(1-8):650-653
Fluid dynamics modelling augmented with routines to simulate acoustic forces on aerosol particles has been used to investigate the potential of combining ultrasonic standing wave fields with optical particle analysis equipment. Simulations of particle dynamics in airstreams incorporating acoustic forces predict that particles in the 1-10 microns diameter range may be effectively focused to the velocity nodes of the standing wave field. Particles move to the velocity nodes within tens of milliseconds for acoustic frequencies of 10-100 kHz and at an acoustic energy density of 100 Jm-3. Larger particles are predicted to move to the velocity antinodes within similar times; however, there is a crossover region at approximately 15-20 microns particle diameter where longer times are predicted due to the competing forces driving particles to the vibration node and antinode. With sufficient transverse flow velocities the models predict that disturbances due to acoustic streaming can be overcome and a useful degree of focusing achieved for the aerosol particles. Results from a model demonstrating sampling and acoustic focusing of 3-9 microns aerosol particles to a 200 microns wide analysis area are presented.  相似文献   

12.
A model was developed to determine the local changes of concentration of particles and the formations of bands induced by a standing acoustic wave field subjected to a sawtooth frequency ramping pattern. The mass transport equation was modified to incorporate the effect of acoustic forces on the concentration of particles. This was achieved by balancing the forces acting on particles. The frequency ramping was implemented as a parametric sweep for the time harmonic frequency response in time steps of 0.1 s. The physics phenomena of piezoelectricity, acoustic fields and diffusion of particles were coupled and solved in COMSOL Multiphysics? (COMSOL AB, Stockholm, Sweden) following a three step approach. The first step solves the governing partial differential equations describing the acoustic field by assuming that the pressure field achieves a pseudo steady state. In the second step, the acoustic radiation force is calculated from the pressure field. The final step allows calculating the locally changing concentration of particles as a function of time by solving the modified equation of particle transport. The diffusivity was calculated as function of concentration following the Garg and Ruthven [1] equation which describes the steep increase of diffusivity when the concentration approaches saturation. However, it was found that this steep increase creates numerical instabilities at high voltages (in the piezoelectricity equations) and high initial particle concentration. The model was simplified to a pseudo one-dimensional case due to computation power limitations. The predicted particle distribution calculated with the model is in good agreement with the experimental data as it follows accurately the movement of the bands in the centre of the chamber.  相似文献   

13.
Acoustic radiation forces have often been used for the manipulation of large amounts of micrometer sized suspended particles. The nature of acoustic standing wave fields is such that they are present throughout the whole fluidic volume; this means they are well suited to such operations, with all suspended particles reacting at the same time upon exposure. Here, this simultaneous positioning capability is exploited to pre-align particles along the centerline of channels, so that they can successively be removed by means of an external tool for further analysis. This permits a certain degree of automation in single particle manipulation processes to be achieved as initial identification of particles’ location is no longer necessary, rather predetermined. Two research fields in which applications are found have been identified. First, the manipulation of copolymer beads and cells using a microgripper is presented. Then, sample preparation for crystallographic analysis by positioning crystals into a loop using acoustic manipulation and a laminar flow will be presented.  相似文献   

14.
Thermoacoustic refrigerators have been developed during the last 15 years, employing quasi-standing resonant acoustic waves inside fluid-filled cavities to transfer heat along a stack region. Because higher efficiency can be reached when a significant travelling wave component exists in the resonator, specific resonant thermoacoustic devices have been designed allowing to adjust more or less the ratio of travelling and standing wave components. However, the acoustic pressure field and the particle velocity field do not appear to be the optimal ones, for the thermal quantities of interest. Thus, it is the aim of the paper to present a new kind of thermoacoustic standing wave-like device which allows to control easily and independently the pressure field and the particle velocity field, after investigating the optimal acoustic field, in the stack region, for the main parameters of interest, i.e. the temperature gradient, the thermoacoustic heat flow and the coefficient of performance.  相似文献   

15.
Surface acoustic wave (SAW)-based acoustofluidics has shown significant promise to manipulate micro/nanoscale objects for biomedical applications, e.g. cell separation, enrichment, and sorting. A majority of the acoustofluidic devices utilize microchannels with rectangular cross-section where the acoustic waves propagate in the direction perpendicular to the sample flow. A region with weak acoustic wave intensity, termed microchannel anechoic corner (MAC), is formed inside a rectangular microchannel of the acoustofluidic devices where the ultrasonic waves refract into the fluid at the Rayleigh angle with respect to the normal to the substrate. Due to the absence of a strong acoustic field within the MAC, the microparticles flowing adjacent to the microchannel wall remain unaffected by a direct SAW-induced acoustic radiation force (ARF). Moreover, an acoustic streaming flow (ASF) vortex produced within the MAC pulls the particles further into the corner and away from the direct ARF influence. Therefore, a residue of particles continues to flow past the SAWs without intended deflection, causing a decrease in microparticle manipulation efficiency. In this work, we introduce a cross-type acoustofluidic device composed of a half-circular microchannel, fabricated through a thermal reflow of a positive photoresist mold, to overcome the limitations associated with rectangular microchannels, prone to the MAC formation. We investigated the effects of different microchannel cross-sectional shapes with varying contact angles on the microparticle deflection in a continuous flow and found three distinct regimes of particle deflection. By systematically removing the MAC out of the microchannel cross-section, we achieved residue-free acoustofluidic microparticle manipulation via SAW-induced ARF inside a half-circular microchannel. The proposed method was applied to efficient fluorescent coating of the microparticles in a size-selective manner without any residue particles left undeflected in the MAC.  相似文献   

16.
The ultrasound radiation force has been used for noncontact excitation of devices ranging from microcantilevers to acoustic guitars. For ultrasound radiation force excitation, one challenge is formation of standing waves between the ultrasound transducer and the device under test. Standing waves result in constructive/destructive interference causing significant variations in the intensity of the ultrasound field. The standing-wave induced intensity variations in the radiation force can result from minor changes in the transducer position, carrier frequency, or changes in the speed of sound due to changes in ambient temperature. The current study demonstrates that by randomly varying the ultrasound carrier frequency in packets, it is possible to eliminate the negative consequences resulting from the formation of standing waves. A converging ultrasound transducer with a central frequency of 550 kHz was focused onto a brass cantilever. The 267 Hz resonance was excited with the ultrasound radiation force with a carrier frequency that randomly varied between 525 kHz to 575 kHz in packets of 10 cycles. Because each packet had a different carrier frequency, the amplitude of standing wave artifacts was reduced by a factor of 20 compared to a constant frequency excitation of 550 kHz.  相似文献   

17.
Ultrasonic standing waves can be used to generate radiation forces on particles within a fluid. A number of authors have derived detailed representations of these forces but these are most commonly applied using an approximation to the energy distribution based upon an idealized standing wave within a mode based upon rigid boundaries. An electro-acoustic model of the acoustic energy distribution within a standing wave with arbitrary thickness boundaries has been expanded to model the radiation force on an example particle within the acoustic field. This is used to examine the force profile on a particle at resonances other than those predicted with rigid boundaries, and with pressure nodes at different positions. A simple analytical method for predicting modal conditions for combinations of frequencies and layer thickness characteristics is presented, which predicts that resonances can exist that will produce a pressure node at arbitrary positions in the fluid layer of such a system. This can be used to design resonators that will drive particles to positions other than the center of the fluid layer, including the fluid/solid boundary of the layer, with significant potential applications in sensing systems. Further, the model also predicts conditions for multiple subwavelength resonances within the fluid layer of a single resonator, each resonance having different nodal planes for particle concentration.  相似文献   

18.
A model is developed for thermoacoustic devices that have neither stack nor regenerator. These "no-stack" devices have heat exchangers placed close together in an acoustic standing wave of sufficient amplitude to allow individual parcels of gas to enter both exchangers. The assumption of perfect heat transfer in the exchangers facilitates the construction of a simple model similar to the "moving parcel picture" that is used as a first approach to stack-based engines and refrigerators. The model no-stack cycle is shown to have potentially greater inviscid efficiency than a comparable stack model. However, losses from flow through the heat exchangers and on the walls of the enclosure are greater than those in a stack-based device due to the increased acoustic pressure amplitude. Estimates of these losses in refrigerators are used to compare the possible efficiencies of real refrigerators made with or without a stack. The model predicts that no-stack refrigerators can exceed stack-based refrigerators in efficiency, but only for particular enclosure geometries.  相似文献   

19.
We studied dynamic friction phenomena introduced by ultrasonic surface acoustic waves using a scanning force microscope in the lateral force mode and a scanning acoustic force microscope. An effect of friction reduction was found when applying surface acoustic waves to the micro-mechanical tip-sample contact. Employing standing acoustic wave fields, the wave amplitude dependent friction variation can be visualized within a microscopic area. At higher wave amplitudes, a regime was found where friction vanishes completely. This behavior is explained by the mechanical diode effect, where the tip's rest position is shifted away from the surface in response to ultrasonic waves.  相似文献   

20.
Acoustic particle manipulation has many potential uses in flow cytometry and microfluidic array applications. Currently, most ultrasonic particle positioning devices utilize a quasi-one-dimensional geometry to set up the positioning field. A transducer fit with a quarter-wave matching layer, locally drives a cavity of width one-half wavelength. Particles within the cavity experience a time-averaged drift force that transports them to a nodal position. Present research investigates an acoustic particle-positioning device where the acoustic excitation is generated by the entire structure, as opposed to a localized transducer. The lowest-order structural modes of a long cylindrical glass tube driven by a piezoceramic with a line contact are tuned, via material properties and aspect ratio, to match resonant modes of the fluid-filled cavity. The cylindrical geometry eliminates the need for accurate alignment of a transducer/reflector system, in contrast to the case of planar or confocal fields. Experiments show that the lower energy density in the cavity, brought about through excitation of the whole cylindrical tube, results in reduced cavitation, convection, and thermal gradients. The effects of excitation and material parameters on concentration quality are theoretically evaluated, using two-dimensional elastodynamic equations describing the fluid-filled cylindrical shell with a line excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号