首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this paper, four sensor types are presented for quantitative measurements in an ultrasonic cleaning vessel: (1) a hydrophone to measure spectral components of the sound field; (2) an aluminium foil technique as a model process for erosion; (3) a test tube filled with a solution of luminol to measure the emission of light; and (4) a test tube filled with potassium iodide solution to measure the oxidation of iodide. Thus a broad range of diverse cavitation effects is covered. The quantities were measured in dependence on three parameters: the electrical input power of the transducers, the temperature and the O2 concentration of the water. To ensure constant environmental conditions, a flow system was built up which continuously exchanges the water in the vessel. The comparability of the data measured in subsequent measurement cycles is discussed and the influence of the different sensor types on the cavitation field is considered. Dependences on the three parameters are shown. A quantitative analysis of correlations between the data is carried out in the second part of the study (Koch and Jüschke, 2012 [1]).  相似文献   

2.
吴博悦  陈毅  李建成 《应用声学》2022,41(2):318-326
空化强度是用以衡量液体介质中空化活动的剧烈程度,同时空化效应在超声清洗中起关键作用,因此,测量超声清洗槽中的空化强度便可了解其中空化活动的情况.当发生空化时,液体介质中会产生成分复杂空化噪声,对空化噪声谱进行分析和计算得到空化噪声级,据此可判断空化强度.实验测得结果表明:超声清洗装置内稳态空化分布广泛、均匀,瞬态空化分...  相似文献   

3.
With a number of cavitation meters on the market which claim to characterise fields in ultrasonic cleaning baths, this paper provides an objective comparison of a selection of these devices and establishes the extent to which their claims are met. The National Physical Laboratory’s multi-frequency ultrasonic reference vessel provided the stable 21.06 kHz field, above and below the inertial cavitation threshold, as a test bed for the sensor comparison. Measurements from these devices were evaluated in relation to the known acoustic pressure distribution in the cavitating vessel as a means of identifying the mode of operation of the sensors and to examine the particular indicator of cavitation activity which they deliver. Through the comparison with megahertz filtered acoustic signals generated by inertial cavitation, it was determined that the majority of the cavitation meters used in this study responded to acoustic pressure generated by the direct applied acoustic field and therefore tended to overestimate the occurrence of cavitation within the vessel, giving non-zero responses under conditions when there was known to be no inertial cavitation occurring with the reference vessel. This has implications for interpreting the data they provide in user applications.  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(4):1496-1503
Changes in the cavitation intensity of gases dissolved in water, including H2, N2, and Ar, have been established in studies of acoustic bubble growth rates under ultrasonic fields. Variations in the acoustic properties of dissolved gases in water affect the cavitation intensity at a high frequency (0.83 MHz) due to changes in the rectified diffusion and bubble coalescence rate. It has been proposed that acoustic bubble growth rates rapidly increase when water contains a gas, such as hydrogen faster single bubble growth due to rectified diffusion, and a higher rate of coalescence under Bjerknes forces. The change of acoustic bubble growth rate in rectified diffusion has an effect on the damping constant and diffusivity of gas at the acoustic bubble and liquid interface. It has been suggested that the coalescence reaction of bubbles under Bjerknes forces is a reaction determined by the compressibility and density of dissolved gas in water associated with sound velocity and density in acoustic bubbles. High acoustic bubble growth rates also contribute to enhanced cavitation effects in terms of dissolved gas in water. On the other hand, when Ar gas dissolves into water under ultrasound field, cavitation behavior was reduced remarkably due to its lower acoustic bubble growth rate. It is shown that change of cavitation intensity in various dissolved gases were verified through cleaning experiments in the single type of cleaning tool such as particle removal and pattern damage based on numerically calculated acoustic bubble growth rates.  相似文献   

5.
A fibre-optic technique was applied to measure the sound field in an ultrasonic cleaning vessel under practical conditions. A metal-coated fibre-tip is used as a sensor and a heterodyne interferometer detects the change in the optical path resulting from the movement of the fibre-tip in the sound field. Spectrally resolved sound field parameters such as the fundamental, the subharmonic or cavitation noise are extracted from the measurements and compared with results obtained by a piezo-electric hydrophone. It was found that the fibre sensor provides a signal related to the velocity in the sound field, but the information about cavitation-related parameters is similar to the information for pressure sensing techniques. The fibre-optic sensors have a uniquely high spatial resolution and the sound detection process is strongly influenced by single cavitation events close to the small fibre-tip. This paper shows that fibre-tip sensors are an alternative to common hydrophone techniques. They can open up new possibilities for measurement problems for which so far no solution exists, in particular when a high spatial resolution is required or when the measurement site is small.  相似文献   

6.
The aluminum foil erosion method is widely used in cavitation activity studies of ultrasonic cleaners. However, owing to its limited sensitivity, it is difficult to observe the effects of various experimental parameters on the cavitation activity using this method. In the present work, a higher-sensitivity method for quantifying cavitation activity as a cavitation dose based on passive cavitation detection was presented. The influences of various factors (e.g., insonation duration, driving power, gas content, temperature and cleaning agents) were studied for this system. The results showed that the cavitation dose became unstable over long insonation times, and that the instability was more significant at high power. Generally, the cavitation activity could be enhanced by increasing the power, gas content, and the concentration of a cleaning agent. However, due to the exhaustion of the cavitation gas nuclei, the cavitation activity might tune to saturate of even decrease slightly when some impact parameters (e.g., acoustic driving power, gas content and the concentration of the cleaning agent) are above a certain level of each of these parameters.  相似文献   

7.
8.
This paper describes investigations of the spatial distribution of cavitation activity generated within an ultrasonic cleaning vessel, undertaken using a novel cavitation sensor concept. The new sensor monitors high frequency acoustic emissions (>1 MHz) generated by micron-sized bubbles driven into acoustic cavitation by the applied acoustic field. Novel design features of the sensor, including its hollow, cylindrical shape, provide the sensor with spatial resolution, enabling it to associate the megahertz acoustic emissions produced by the cavitating bubbles with specific regions of space within the vessel. The performance of the new sensor has been tested using a 40 kHz ultrasonic cleaner employing four transducers and operating at a nominal electrical power of 140 W under controlled conditions. The results demonstrate the ability of the sensors to identify 'hot-spots' and 'cold-spots' in cavitation activity within the vessel, and show good qualitative agreement with an assessment of the spatial distribution of cavitation determined through erosion monitoring of thin sheets of aluminium foil. The implications of the studies for the development of reliable methods of quantifying the performance of cleaning vessels are discussed in detail.  相似文献   

9.
优化超声变幅杆的形状结构可有效地提高水域声场分布和空化区域,提升对水域超声空化效果。通过模拟分析发现传统超声变幅杆在水域中具有声场分布均匀性差、变幅杆端部声压高等特征,不利于声波在水域中传播。基于此,提出并优化设计了一种具有碟形结构的变幅杆,位于变幅杆的最大振幅处的碟形结构,有更大的振动位移;模拟表明其水域声场和声压均衡度显著优于传统变幅杆,铝箔空化腐蚀实验进一步证实了其水域中的声压分布均匀性。同时,实验通过铝箔的空化腐蚀、KI剂量测定及工件表面油渍去除对比了传统变幅杆和碟形变幅杆,分析表明碟形变幅杆所在水域中有较大的空化腐蚀区域,腐蚀速率明显提升,声化学反应速率提高,油渍去除程度增强,说明了设计的碟形变幅杆能够促进空化泡的产生,增加水域空化区域。  相似文献   

10.
杨昱皞  何瑞麟  戴阳  方亮  贺刘刚 《应用声学》2023,42(5):1042-1051
为在复杂的海洋环境噪声场中检测出目标海豚的某类声信号,设计了一种基于海豚声学特征的端点检测方法。根据海洋环境中噪声能量大且分布频率范围广,而海豚声音的时频特征具有持续时间短,、频率高且集中,、发声行为持续时间长的特点,将采集到的海洋声音进行分帧,计算单帧信号短时能量、谱质心和谱质心二阶偏移率,当海豚发出声信号时,谱质心和能量相应发生突变,截取发生突变的信号实现端点检测。通过与门限法等其他常见端点检测方法进行对比,结果表明,此方法在低信噪比的海洋环境下对单一海豚的某一类声信号检测准确度更高,同时具有较强的抗干扰能力。  相似文献   

11.
Objective and motivationThe method for measuring derived acoustic power of an ultrasound point source in the form of a sonotrode tip has been considered in the free acoustic field, according to the IEC 61847 standard. The main objective of this work is measuring averaged pressure magnitude spatial distribution of an sonotrode tip in the free acoustic field conditions at different electrical excitation levels and calculation of the derived acoustic power at excitation frequency (f0  25 kHz). Finding the derived acoustic power of an ultrasonic surgical device in the strong cavitation regime of working, even in the considered laboratory conditions (anechoic pool), will enable better understanding of the biological effects on the tissue produced during operation with the considered device.Experimental methodThe pressure magnitude spatial distribution is measured using B&;K 8103 hydrophone connected with a B&;K 2626 conditioning amplifier, digital storage oscilloscope LeCroy Waverunner 474, where pressure waveforms in the field points are recorded. Using MATLAB with DSP processing toolbox, averaged power spectrum density of recorded pressure signals in different field positions is calculated. The measured pressure magnitude spatial distributions are fitted with the appropriate theoretical models.Theoretical approachesIn the linear operating mode, using the acoustic reciprocity principle, the sonotrode tip is theoretically described as radially oscillating sphere (ROS) and transversely oscillating sphere (TOS) in the vicinity of pressure release boundary. The measured pressure magnitude spatial distribution is fitted with theoretical curves, describing the pressure field of the considered theoretical models. The velocity and displacement magnitudes with derived acoustic power of equivalent theoretical sources are found, and the electroacoustic efficiency factor is calculated. When the transmitter is excited at higher electrical power levels, the displacement magnitude of sonotrode tip is increased, and nonlinear behaviour in loading medium appears, with strong cavitation activity produced hydrodynamically. The presence of harmonics, subharmonics and ultraharmonics as a consequence of stable cavitation is evident in the averaged power spectral density. The cavitation noise with continuous frequency components is present as a consequence of transient cavitation. The averaged pressure magnitude at the frequency components of interest (discrete and continous) in the field points is found by calculating average power spectral density of the recorded pressure waveform signal using the welch method. The frequency band of interest where average power spectral density is calculated is in the range from 15 Hz up to 120 kHz due to measurement system restrictions. The novelty in the approach is the application of the acoustic reciprocity principle on the nonlinear system (sonotrode tip and bubble cloud) to find neccessary acoustic power of the equivalent acoustic source to produce the measured pressure magnitude in the field points at the frequency components of interest.ResultsIn the nonlinear operating mode, the ROS model for the considered sonotrode tip is chosen due to the better agreement between measurement results and theoretical considerations. At higher excitation levels, it is shown that the averaged pressure magnitude spatial distribution of discrete frequency components, produced due to stable cavitation, can be fitted in the far field with the inverse distance law. The reduced electroacoustic efficiency factor, calculated at excitation frequency component as ratio of derived acoustic power with applied electrical power, is reduced from 40% in the linear to 3% in the strong nonlinear operating mode. The derived acoustic power at other frequency components (subharmonic, harmonic and ultraharmonic) is negligible in comparison with the derived acoustic power at excitation frequency.Discussion and conclusionsThe sonotrode tip and loading medium are shown in the strong cavitation regime as the coupled nonlinear dynamical system radiating acoustic power at frequency components appearing in the spectrum. The bubble cloud in the strong nonlinear operating mode decreases the derived acoustic power significantly at the excitation frequency.  相似文献   

12.
During multi-bubble cavitation the bubbles tend to organize themselves into clusters and thus the understanding of properties and dynamics of clustering is essential for controlling technical applications of cavitation. Sound field measurements are a potential technique to provide valuable experimental information about the status of cavitation clouds. Using purpose-made, rugged, wide band, and small-sized needle hydrophones, sound field measurements in bubble clusters were performed and time-dependent sound pressure waveforms were acquired and analyzed in the frequency domain up to 20 MHz. The cavitation clusters were synchronously observed by an electron multiplying charge-coupled device (EMCCD) camera and the relation between the sound field measurements and cluster behaviour was investigated. Depending on the driving power, three ranges could be identified and characteristic properties were assigned. At low power settings no transient and no or very low stable cavitation activity can be observed. The medium range is characterized by strong pressure peaks and various bubble cluster forms. At high power a stable double layer was observed which grew with further increasing power and became quite dynamic. The sound field was irregular and the fundamental at driving frequency decreased. Between the bubble clouds completely different sound field properties were found in comparison to those in the cloud where the cavitation activity is high. In between the sound field pressure amplitude was quite small and no collapses were detected.  相似文献   

13.
Auditory Mixed Reality (MR) systems that reproduce Three-Dimensional (3-D) acoustic sound fields have recently become a research focus because the combination of visual and auditory MR systems can achieve a greater sense of presence than conventional visual MR systems. General auditory MR systems usually use a headphone-based system with a Head-Related Transfer Function (HRTF), which is a major system for reproducing 3-D acoustic sound fields. However, the localization accuracy of sound images with a HRTF depends on the individual. On the other hand, we have already proposed a system for reproducing a 3-D acoustic sound field with parametric loudspeakers instead of headphones. The 3-D acoustic sound field reproduced by this system has achieved a highly accurate localization of sound images. However, one problem is that it is difficult to reproduce lower frequency sounds using parametric loudspeakers, which causes a poorer sound quality. We tried to accomplish a greater sense of presence for 3-D acoustic sound fields based on a hybrid combination of an electrodynamic subwoofer and the parametric loudspeakers by improving the sound quality. Sound images were formed at the target location using the parametric loudspeakers, and a lower frequency sound was compensated for by using the electrodynamic subwoofer. Subjective evaluation experiments were conducted to verify the effectiveness of the proposed system. We confirmed the improved sound quality while maintaining a higher accuracy of sound image localization by using the proposed system. We also confirmed the optimum parameters of the proposed system to achieve a greater sense of presence.  相似文献   

14.
Contactless ultrasound is a novel, easily implemented, technique for the Ultrasonic Treatment (UST) of liquid metals. Instead of using a vibrating sonotrode probe inside the melt, which leads to contamination, we consider a high AC frequency electromagnetic coil placed close to the metal free surface. The coil induces a rapidly changing Lorentz force, which in turn excites sound waves. To reach the necessary pressure amplitude for cavitation with the minimum electrical energy use, it was found necessary to achieve acoustic resonance in the liquid volume, by finely tuning the coil AC supply frequency. The appearance of cavitation was then detected experimentally with an externally placed ultrasonic microphone and confirmed by the reduction in grain size of the solidified metal. To predict the appearance of various resonant modes numerically, the exact dimensions of the melt volume, the holding crucible, surrounding structures and their sound properties are required. As cavitation progresses the speed of sound in the melt changes, which in practice means resonance becomes intermittent. Given the complexity of the situation, two competing numerical models are used to compute the soundfield. A high order time-domain method focusing on a particular forcing frequency and a Helmholtz frequency domain method scanning the full frequency range of the power supply. A good agreement is achieved between the two methods and experiments which means the optimal setup for the process can be predicted with some accuracy.  相似文献   

15.
超声空化现象影响因素的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
超声空化在许多不同的学科和工业生产中有着广泛的应用。超声空化的应用与声场的分布及空化的机理密切相关,精准地反映空化场和空化机理是超声空化技术实际应用的关键。该文通过分析采集的声信号和金属箔膜空蚀法对空化区域随液位发生变化的现象进行研究,并利用Matlab对金属箔膜空蚀程度量化。实验发现,超声波会在液面与实验箱体底部形成驻波场。在某一液体温度下,随着液位高度的变化,超声空化现象的出现具有周期性。并且,在同一液位下,当超声功率改变时,空化区域强度分布情况随之改变。小功率时各空化区域空化强度分布均匀,当功率增大到一定时,会出现空化屏蔽现象。该研究为超声清洗设备的改良提供了借鉴,对进一步认识和利用超声空化效应具有重要意义。  相似文献   

16.
在海洋声学中,三维抛物方程模型可以有效考虑三维空间的声传播效应。然而,采用三维抛物方程模型分析三维空间内的声传播问题时,计算时间较长,并且需要消耗较大的计算机内存,因此给远距离声场的快速精确计算带来了很大困难。为此,将非均匀网格Galerkin离散化方法用于三维直角坐标系下的水声抛物方程模型中,深度算子和水平算子Galerkin离散方式由均匀网格变为非均匀网格。仿真结果表明,三维直角坐标系下非均匀网格离散的抛物方程模型,在保持计算精度、提高计算速度的同时,可以实现远距离声场的快速预报。另外,针对远距离局部海底地形与距离有关的三维声传播问题,给出了声场快速计算方法;在海底保持水平的区域,采用经典Kraken模型,重构抛物方程算法的初始场,随后依次递推求解地形与距离有关海底下的三维声场。采用改进模型,证明了远距离楔形波导声强增强效应。   相似文献   

17.
Megasonic cleaning as applied in leading edge semiconductor device manufacturing strongly relies on the phenomenon of acoustic cavitation. As the occurrence of acoustic cavitation is incorporating a multitude of interdependent effects, the amount of cavitation activity in the cleaning liquid strongly depends on the sonication conditions. It is shown that cavitation activity as measured by means of ultraharmonic cavitation noise can be significantly enhanced when pulsed sonication is applied to a gas supersaturated liquid under traveling wave conditions. It is demonstrated that this enhancement coincides with a dramatic increase in particle removal and is therefore of great interest for megasonic cleaning applications. It is demonstrated that the optimal pulse parameters are determined by the dissolution time of the active bubbles, whereas the amount of cavitation activity depends on the ratio between pulse-off and pulse-on time as well as the applied acoustic power. The optimal pulse-off time is independent of the corresponding pulse-on time but increases significantly with increasing gas concentration. We show that on the other hand, supersaturation is needed to enable acoustic cavitation at aforementioned conditions, but has to be kept below values, for which active bubbles cannot dissolve anymore and are therefore lost during subsequent pulses. For the applicable range of gas contents between 100% and 130% saturation, the optimal pulse-off time reaches values between 150 and 340 ms, respectively. Full particle removal of 78 nm-diameter silica particles at a power density of 0.67 W/cm2 is obtained for the optimal pulse-off times. The optimal pulse-off time values are derived from the dissolution time of bubbles with a radius of 3.3 μm and verified experimentally. The bubble radius used in the calculations corresponds to the linear resonance size in a 928 kHz sound field, which demonstrates that the recycling of active bubbles is the main enhancement mechanism. The optimal choice of the pulsing conditions however is constrained by the trade-off between the effective sonication time and the desire to have a sufficient amount of active bubbles at lower powers, which might be necessary if very delicate structures have to be cleaned.  相似文献   

18.
Results of an experimental study of shallow-water sound fields are presented. The experiment is carried out in the frequency range 112–3200 Hz on a 150-km-long propagation track. A comparative analysis of experimental and calculated data is performed. Estimates are obtained for the loss coefficient associated with sound attenuation in the bottom, as well as for the parameters of the bottom, which is modeled as a homogeneous liquid absorbing half-space. The vertical interference structure of the sound field formed at a frequency of 112 Hz in the vicinity of the source is considered.  相似文献   

19.
Ultrasonic oxidation desulfurization (UODS) has been considered a promising method for deeply desulfurization technology since it can be carried out using mild conditions. During the last few decades many experimental investigations have been carried out on optimizing the reaction condition such as ultrasonic irradiation time, oxidizing reagents amount, kind of organic acid and so on. But limited work has been reported on the influence of the ultrasonic cavitation field distribution. In this work, the relative intensity of the cavitation events has been measured with the aluminum foil erosion method in a commonly used ultrasonic cleaning vessel both in horizontal and vertical directions. The aluminum foil erosion image was then collected into computer by a scanner. In addition, the image processing program of MATLAB software was used to pretreat the erosion image and find out the positions of the erosion points so that the ratio of the erosion area to the entire area can be calculated which helped to quantify the measurement result since the erosion ratios was the representation of the cavitation intensity. The desulfurization efficiency was then measured in different position of the vessel. The results match well with the cavitation field distribution results which indicate that the cavitation field distribution can be used to guide the UODS process.  相似文献   

20.
 设计了一种宽谱段大口径透射式摄影镜头,主要光学参数:焦距f′=200mm,口径D=160mm,视场角2ω=18°,光谱范围400μm~950μm。通过增加透镜个数,分裂厚透镜,选择具有相似色散特性的玻璃等方法将双高斯物镜复杂化,并且通过减小透镜通光口径消除部分边缘光线来改善像质。最终设计出的光学系统在空间频率30lp/mm时MTF 大于0.55,且各种像差都得到了很好地校正,像质均匀,满足宽谱段大口径摄影镜头的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号