首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Bond stretching mimics different levels of electron correlation and provides a challenging test bed for approximate many-body computational methods. Using the recently developed phaseless auxiliary-field quantum Monte Carlo (AF QMC) method, we examine bond stretching in the well-studied molecules BH and N(2) and in the H(50) chain. To control the sign/phase problem, the phaseless AF QMC method constrains the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. With single Slater determinants from unrestricted Hartree-Fock as trial wave function, the phaseless AF QMC method generally gives better overall accuracy and a more uniform behavior than the coupled cluster CCSD(T) method in mapping the potential-energy curve. In both BH and N(2), we also study the use of multiple-determinant trial wave functions from multiconfiguration self-consistent-field calculations. The increase in computational cost versus the gain in statistical and systematic accuracy are examined. With such trial wave functions, excellent results are obtained across the entire region between equilibrium and the dissociation limit.  相似文献   

2.
A series of calculations for the first- and second-row post-d elements (Ga-Br and In-I) are presented using the phaseless auxiliary-field quantum Monte Carlo (AF QMC) method. This method is formulated in a Hilbert space defined by any chosen one-particle basis and maps the many-body problem into a linear combination of independent-particle solutions with external auxiliary fields. The phase/sign problem is handled approximately by the phaseless formalism using a trial wave function, which in our calculations was chosen to be the Hartree-Fock solution. We used the consistent correlated basis sets of Peterson et al. [J. Chem. Phys. 119, 11099 (2003); 119, 11113 (2003)], which employ a small-core relativistic pseudopotential. The AF QMC results are compared with experiment and with those from density functional (generalized gradient approximation and B3LYP) and CCSD(T) calculations. The AF QMC total energies agree with CCSD(T) to within a few millihartrees across the systems and over several basis sets. The calculated atomic electron affinities, ionization energies, and spectroscopic properties of dimers are, at large basis sets, in excellent agreement with experiment.  相似文献   

3.
The authors present phaseless auxiliary-field (AF) quantum Monte Carlo (QMC) calculations of the ground states of some hydrogen-bonded systems. These systems were selected to test and benchmark different aspects of the new phaseless AF QMC method. They include the transition state of H+H(2) near the equilibrium geometry and in the van der Walls limit, as well as the H(2)O, OH, and H(2)O(2) molecules. Most of these systems present significant challenges for traditional independent-particle electronic structure approaches, and many also have exact results available. The phaseless AF QMC method is used either with a plane wave basis with pseudopotentials or with all-electron Gaussian basis sets. For some systems, calculations are done with both to compare and characterize the performance of AF QMC under different basis sets and different Hubbard-Stratonovich decompositions. Excellent results are obtained using as input single Slater determinant wave functions taken from independent-particle calculations. Comparisons of the Gaussian based AF QMC results with exact full configuration interaction show that the errors from controlling the phase problem with the phaseless approximation are small. At the large basis-size limit, the AF QMC results using both types of basis sets are in good agreement with each other and with experimental values.  相似文献   

4.
Quantum Monte Carlo (QMC) methods such as variational Monte Carlo and fixed node diffusion Monte Carlo depend heavily on the quality of the trial wave function. Although Slater-Jastrow wave functions are the most commonly used variational ansatz in electronic structure, more sophisticated wave functions are critical to ascertaining new physics. One such wave function is the multi-Slater-Jastrow wave function which consists of a Jastrow function multiplied by the sum of Slater determinants. In this paper we describe a method for working with these wave functions in QMC codes that is easy to implement, efficient both in computational speed as well as memory, and easily parallelized. The computational cost scales quadratically with particle number making this scaling no worse than the single determinant case and linear with the total number of excitations. Additionally, we implement this method and use it to compute the ground state energy of a water molecule.  相似文献   

5.
A reformulation of the fixed-node diffusion quantum Monte Carlo method (FN-DQMC) in terms of the N-particle density matrix is presented, which allows us to reduce the computational effort to linear for the evaluation of the local energy. The reformulation is based on our recently introduced density matrix-based approach for a linear-scaling variational QMC method [J. Kussmann et al., Phys. Rev. B. 75, 165107 (2007)]. However, within the latter approach of using the positive semi-definite N-particle trial density (rhoN T(R)=mid R:Psi(T)(R)mid R:(2)), the nodal information of the trial function is lost. Therefore, a straightforward application to the FN-DQMC method is not possible, in which the sign of the trial function is usually traced in order to confine the random walkers to their nodal pockets. As a solution, we reformulate the FN-DQMC approach in terms of off-diagonal elements of the N-particle density matrix rhoN T(R;R'), so that the nodal information of the trial density matrix is obtained. Besides all-electron moves, a scheme to perform single-electron moves within N-PDM QMC is described in detail. The efficiency of our method is illustrated for exemplary calculations.  相似文献   

6.
Weak H(2) physisorption energies present a significant challenge to even the best correlated theoretical many-body methods. We use the phaseless auxiliary-field quantum Monte Carlo method to accurately predict the binding energy of Ca(+)-4H(2). Attention has recently focused on this model chemistry to test the reliability of electronic structure methods for H(2) binding on dispersed alkaline earth metal centers. A modified Cholesky decomposition is implemented to realize the Hubbard-Stratonovich transformation efficiently with large Gaussian basis sets. We employ the largest correlation-consistent Gaussian type basis sets available, up to cc-pCV5Z for Ca, to accurately extrapolate to the complete basis limit. The calculated potential energy curve exhibits binding with a double-well structure.  相似文献   

7.
The basis set convergence of weak interaction energies for dimers of noble gases helium through krypton is studied for six variants of the explicitly correlated, frozen geminal coupled-cluster singles, doubles, and noniterative triples [CCSD(T)-F12] approach: the CCSD(T)-F12a, CCSD(T)-F12b, and CCSD(T)(F12*) methods with scaled and unscaled triples. These dimers were chosen because CCSD(T) complete-basis-set (CBS) limit benchmarks are available for them to a particularly high precision. The dependence of interaction energies on the auxiliary basis sets has been investigated and it was found that the default resolution-of-identity sets cc-pVXZ/JKFIT are far from adequate in this case. Overall, employing the explicitly correlated approach clearly speeds up the basis set convergence of CCSD(T) interaction energies, however, quite surprisingly, the improvement is not as large as the one achieved by a simple addition of bond functions to the orbital basis set. Bond functions substantially improve the CCSD(T)-F12 interaction energies as well. For small and moderate bases with bond functions, the accuracy delivered by the CCSD(T)-F12 approach cannot be matched by conventional CCSD(T). However, the latter method in the largest available bases still delivers the CBS limit to a better precision than CCSD(T)-F12 in the largest bases available for that approach. Our calculations suggest that the primary reason for the limited accuracy of the large-basis CCSD(T)-F12 treatment are the approximations made at the CCSD-F12 level and the non-explicitly correlated treatment of triples. In contrast, the explicitly correlated second-order Mo?ller-Plesset perturbation theory (MP2-F12) approach is able to pinpoint the complete-basis-set limit MP2 interaction energies of rare gas dimers to a better precision than conventional MP2. Finally, we report and analyze an unexpected failure of the CCSD(T)-F12 method to deliver the core-core and core-valence correlation corrections to interaction energies consistently and accurately.  相似文献   

8.
Accurate calculation of hydrogen abstraction reaction barriers is a challenging problem, often requiring high level quantum chemistry methods that scale poorly with system size. Quantum Monte Carlo (QMC) methods provide an alternative approach that exhibit much better scaling, but these methods are still computationally expensive. We describe approaches that can significantly reduce the cost of QMC calculations of barrier heights, using the hydrogen abstraction of methanol by a hydrogen atom as an illustrative example. By analysing the combined influence of trial wavefunctions and pseudopotential quadrature settings on the barrier heights, variance, and time‐step errors, we devise a simple protocol that minimizes the cost of the QMC calculations while retaining accuracy comparable to large‐basis coupled cluster theory. We demonstrate that this protocol is transferable to other hydrogen abstraction reactions.  相似文献   

9.
Reduction of titanium and vanadium compounds is a process accompanying the activation of coordinative olefin polymerization catalysts. Four density functional theory (DFT) functionals, coupled cluster with single, double, and perturbative triple excitations method CCSD(T) as well as complete active-space second-order perturbation theory method CASPT2 with a complete active-space self-consistent field CASSCF reference wave function were applied to investigate the thermodynamics of titanium and vanadium reduction. The performance of these theoretical methods was assessed and compared with experimental values. The calculations indicate that vanadium(IV) chloride is more easily reduced by trimethylaluminum than the corresponding titanium compound; the energies of reaction calculated at the CCSD(T) level are equal -57.21 and -33.10 kcal/mol, respectively. The calculations deal with the redox reactions of metal chlorides in the gas phase, rather than solvated ions in the aqueous solution. This approach may be more appropriate for olefin polymerization, usually carried out in nonpolar solvents.  相似文献   

10.
The coupled clusters singles and doubles (CCSD ) method for calculations of open-shell systems with the single restricted Hartree–Fock (ROHF ) reference determinant is extended by the noniterative triples to give CCSD(T) . Our approach profits from the fact that (a) single- and double-excitation amplitudes are spin-adapted, which directly leads to a computationally less demanding algorithm than are nonadapted procedures and produces the spin-adapted CCSD wave function and (b) triple excitations calculated from converged spin-adapted (SA ) CCSD amplitudes are also obtained more effectively. Altogether, computer demands of our SA CCSD(T) approach, applicable to high-spin open-shell cases which are well represented by a single-determinant reference is comparable to that for closed-shell systems. Our approach is not based on semicanonical orbitals, applied by Bartlett's group. However, we compare some other possible choices of ROHF orbitals to this “standard.” Numerical results for a series of atoms and molecules demonstrate little sensitivity to this selection. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
For a test set of 17 first-row small molecules, the equilibrium structures are calculated with Ornstein-Uhlenbeck diffusion quantum Monte Carlo simulations guiding by trial wave functions constructed from floating spherical Gaussian orbitals and spherical Gaussian geminals. To measure performance of the Monte Carlo calculations, the mean deviation, the mean absolute deviation, the maximum absolute deviation, and the standard deviation of Monte Carlo calculated equilibrium structures with respect to empirical equilibrium structures are given. This approach is found to yield results having a uniformly high quality, being consistent with empirical equilibrium structures and surpassing calculated values from the coupled cluster model with single, double, and noniterative triple excitations [CCSD(T)] with the basis sets of cc-pCVQZ and cc-pVQZ. The nonrelativistic equilibrium atomization energies are also presented to assess performance of the calculated methods. The mean absolute deviations regarding experimental atomization energy are 0.16 and 0.21 kcal/mol for the Monte Carlo and CCSD(T)/cc-pCV(56)Z calculations, respectively.  相似文献   

12.
The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Ko?hn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (L(max)+1)(-7) convergence of the noniterative triples correction, where L(max) is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.  相似文献   

13.
We propose a new computational protocol to obtain highly accurate theoretical reference data. This protocol employs the explicitly correlated coupled-cluster method with iterative single and double excitations as well as perturbative triple excitations, CCSD(T)(F12), using quadruple-z\zeta basis sets. Higher excitations are accounted for by conventional CCSDT(Q) calculations using double-z\zeta basis sets, while core/core-valence correlation effects are estimated by conventional CCSD(T) calculations using quadruple-z\zeta basis sets. Finally, scalar-relativistic effects are accounted for by conventional CCSD(T) calculations using triple-z\zeta basis sets. In the present article, this protocol is applied to the popular test sets AE6 and BH6. An error analysis shows that the new reference values obtained by our computational protocol have an uncertainty of less than 1 kcal/mol (chemical accuracy). Furthermore, concerning the atomization energies, a cancellation of the basis set incompleteness error in the CCSD(T)(F12) perturbative triples contribution with the corresponding error in the contribution from higher excitations is observed. This error cancellation is diminished by the CCSD(T*)(F12) method. Thus, we recommend the use of the CCSD(T*)(F12) method only for small- and medium-sized basis sets, while the CCSD(T)(F12) approach is preferred for high-accuracy calculations in large basis sets.  相似文献   

14.
The reduced multireference coupled-cluster method with singles and doubles (RMR CCSD) that employs multireference configuration interaction wave function as an external source for a small subset of approximate connected triples and quadruples, is perturbatively corrected for the remaining triples along the same lines as in the standard CCSD(T) method. The performance of the resulting RMR CCSD(T) method is tested on four molecular systems, namely, the HF and F(2) molecules, the NO radical, and the F(2) (+) cation, representing distinct types of molecular structure, using up to and including a cc-pVQZ basis set. The results are compared with those obtained with the standard CCSD(T), UCCSD(T), CCSD(2), and CR CCSD(T) methods, wherever applicable or available. An emphasis is made on the quality of the computed potentials in a broad range of internuclear separations and on the computed equilibrium spectroscopic properties, in particular, harmonic frequencies omega(e). It is shown that RMR CCSD(T) outperforms other triply corrected methods and is widely applicable.  相似文献   

15.
The CCSD, CCSD(T), and CR-CC(2,3) coupled cluster methods, combined with five triple-zeta basis sets, namely, MG3S, aug-cc-pVTZ, aug-cc-pV(T+d)Z, aug-cc-pCVTZ, and aug-cc-pCV(T+d)Z, are tested against the DBH24 database of diverse reaction barrier heights. The calculations confirm that the inclusion of connected triple excitations is essential to achieving high accuracy for thermochemical kinetics. They show that various noniterative ways of incorporating connected triple excitations in coupled cluster theory, including the CCSD(T) approach, the full CR-CC(2,3) method, and approximate variants of CR-CC(2,3) similar to the triples corrections of the CCSD(2) approaches, are all about equally accurate for describing the effects of connected triply excited clusters in studies of activation barriers. The effect of freezing core electrons on the results of the CCSD, CCSD(T), and CR-CC(2,3) calculations for barrier heights is also examined. It is demonstrated that to include core correlation most reliably, a basis set including functions that correlate the core and that can treat core-valence correlation is required. On the other hand, the frozen-core approximation using valence-optimized basis sets that lead to relatively small computational costs of CCSD(T) and CR-CC(2,3) calculations can achieve almost as high accuracy as the analogous fully correlated calculations.  相似文献   

16.
The partially linearized (pl), fully size-extensive multireference (MR) coupled-cluster (CC) method, fully accounting for singles (S) and doubles (D) and approximately for a subset of primary higher than doubles, referred to as plMR CCSD, as well as its plMR CCSD(T) version corrected for secondary triples, as described in Part I of this paper [X. Li and J. Paldus, J. Chem. Phys. 128, 144118 (2008)], are applied to the problem of bond breaking in the HF, F2, H2O, and N2 molecules, as well as to the H4 model, using basis sets of a DZ or a cc-pVDZ quality that enable a comparison with the full configuration interaction (FCI) exact energies for a given ab initio model. A comparison of the performance of the plMR CCSD/CCSD(T) approaches with those of the reduced MR (RMR) CCSD/CCSD(T) methods, as well as with the standard single reference (SR) CCSD and CCSD(T) methods, is made in each case. For the H4 model and N2 we also compare our results with the completely renormalized (CR) CC(2,3) method [P. Piecuch and M. W?och, J. Chem. Phys. 123, 224105 (2005)]. An important role of a proper choice of the model space for the MR-type methods is also addressed. The advantages and shortcomings of all these methods are pointed out and discussed, as well as their size-extensivity characteristics, in which case we distinguish supersystems involving noninteracting SR and MR subsystems from those involving only MR-type subsystems. Although the plMR-type approaches render fully size-extensive results, while the RMR CCSD may slightly violate this property, the latter method yields invariably superior results to the plMR CCSD ones and is more easy to apply in highly demanding cases, such as the triple-bond breaking in the nitrogen molecule.  相似文献   

17.
A perturbatively truncated version of the reduced multireference coupled-cluster method with singles and doubles and noniterative triples RMR CCSD(T) is described. In the standard RMR CCSD method, the effect of all triples and quadruples that are singles or doubles relative to references spanning a chosen multireference (MR) model space is accounted for via the external corrections based on the MR CISD wave function. In the full version of RMR CCSD(T), the remaining triples are then handled via perturbative corrections as in the standard, single-reference (SR) CCSD(T) method. By using a perturbative threshold in the selection of MR CISD configuration space, we arrive at the truncated version of RMR CCSD(T), in which the dimension of the MR CISD problem is significantly reduced, thus leaving more triples to be treated perturbatively. This significantly reduces the computational cost. We illustrate this approach on the F2 molecule, in which case the computational cost of the truncated version of RMR CCSD(T) is only about 10%-20% higher than that of the standard CCSD(T), while still eliminating the failure of CCSD(T) in the bond breaking region of geometries. To demonstrate the capabilities of the method, we have also used it to examine the structure and binding energy of transition metal complexes Ni(CO)n with n=1, 2, and 4. In particular, Ni(CO)2 is shown to be bent rather than linear, as implied by some earlier studies. The RMR CCSD(T) binding energy differs from the SR CCSD(T) one by 1-2 kcal/mol, while the energy barrier separating the linear and bent structures of Ni(CO)2 is smaller than 1 kcal/mol.  相似文献   

18.
To approach the complete basis set limit of the "gold-standard" coupled-cluster singles and doubles plus perturbative triples [CCSD(T)] method, we extend the recently proposed perturbative explicitly correlated coupled-cluster singles and doubles method, CCSD(2)(R12) [E. F. Valeev, Phys. Chem. Chem. Phys. 8, 106 (2008)], to account for the effect of connected three-electron correlations. The natural choice of the zeroth-order Hamiltonian produces a perturbation expansion with rigorously separable second-order energy corrections due to the explicitly correlated geminals and conventional triple and higher excitations. The resulting CCSD(T)(R12) energy is defined as a sum of the standard CCSD(T) energy and an amplitude-dependent geminal correction. The method is technically very simple: Its implementation requires no modification of the standard CCSD(T) program and the formal cost of the geminal correction is small. We investigate the performance of the open-shell version of the CCSD(T)(R12) method as a possible replacement of the standard complete-basis-set CCSD(T) energies in the high accuracy extrapolated ab initio thermochemistry model of Stanton et al. [J. Chem. Phys. 121, 11599 (2004)]. Correlation contributions to the heat of formation computed with the new method in an aug-cc-pCVXZ basis set have mean absolute basis set errors of 2.8 and 1.0 kJmol when X is T and Q, respectively. The corresponding errors of the standard CCSD(T) method are 9.1, 4.0, and 2.1 kJmol when X=T, Q, and 5. Simple two-point basis set extrapolations of standard CCSD(T) energies perform better than the explicitly correlated method for absolute correlation energies and atomization energies, but no such advantage found when computing heats of formation. A simple Schwenke-type two-point extrapolation of the CCSD(T)(R12)aug-cc-pCVXZ energies with X=T,Q yields the most accurate heats of formation found in this work, in error on average by 0.5 kJmol and at most by 1.7 kJmol.  相似文献   

19.
Nonrelativistic clamped-nuclei pair interaction energy for ground-state helium atoms has been computed for 12 interatomic separations ranging from 3.0 to 9.0 bohr. The calculations applied the supermolecular approach. The major part of the interaction energy was obtained using the Gaussian geminal implementation of the coupled-cluster theory with double excitations (CCD). Relatively small contributions from single, triple, and quadruple excitations were subsequently included employing the conventional orbital coupled-cluster method with single, double, and noniterative triple excitations [CCSD(T)] and the full configuration interaction (FCI) method. For three distances, the single-excitation contribution was taken from literature Gaussian-geminal calculations at the CCSD level. The orbital CCSD(T) and FCI calculations used very large basis sets, up to doubly augmented septuple- and sextuple-zeta size, respectively, and were followed by extrapolations to the complete basis set limits. The accuracy of the total interaction energies has been estimated to be about 3 mK or 0.03% at the minimum of the potential well. For the attractive part of the well, the relative errors remain consistently smaller than 0.03%. In the repulsive part, the accuracy is even better, except, of course, for the region where the potential goes through zero. For interatomic separations smaller than 4.0 bohr, the relative errors do not exceed 0.01%. Such uncertainties are significantly smaller than the expected values of the relativistic and diagonal Born-Oppenheimer contributions to the potential.  相似文献   

20.
The first-principles calculation of non-covalent (particularly dispersion) interactions between molecules is a considerable challenge. In this work we studied the binding energies for ten small non-covalently bonded dimers with several combinations of correlation methods (MP2, coupled-cluster single double, coupled-cluster single double (triple) (CCSD(T))), correlation-consistent basis sets (aug-cc-pVXZ, X = D, T, Q), two-point complete basis set energy extrapolations, and counterpoise corrections. For this work, complete basis set results were estimated from averaged counterpoise and non-counterpoise-corrected CCSD(T) binding energies obtained from extrapolations with aug-cc-pVQZ and aug-cc-pVTZ basis sets. It is demonstrated that, in almost all cases, binding energies converge more rapidly to the basis set limit by averaging the counterpoise and non-counterpoise corrected values than by using either counterpoise or non-counterpoise methods alone. Examination of the effect of basis set size and electron correlation shows that the triples contribution to the CCSD(T) binding energies is fairly constant with the basis set size, with a slight underestimation with CCSD(T)∕aug-cc-pVDZ compared to the value at the (estimated) complete basis set limit, and that contributions to the binding energies obtained by MP2 generally overestimate the analogous CCSD(T) contributions. Taking these factors together, we conclude that the binding energies for non-covalently bonded systems can be accurately determined using a composite method that combines CCSD(T)∕aug-cc-pVDZ with energy corrections obtained using basis set extrapolated MP2 (utilizing aug-cc-pVQZ and aug-cc-pVTZ basis sets), if all of the components are obtained by averaging the counterpoise and non-counterpoise energies. With such an approach, binding energies for the set of ten dimers are predicted with a mean absolute deviation of 0.02 kcal/mol, a maximum absolute deviation of 0.05 kcal/mol, and a mean percent absolute deviation of only 1.7%, relative to the (estimated) complete basis set CCSD(T) results. Use of this composite approach to an additional set of eight dimers gave binding energies to within 1% of previously published high-level data. It is also shown that binding within parallel and parallel-crossed conformations of naphthalene dimer is predicted by the composite approach to be 9% greater than that previously reported in the literature. The ability of some recently developed dispersion-corrected density-functional theory methods to predict the binding energies of the set of ten small dimers was also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号