首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate induced smectic A and smectic B phases in binary nematic liquid crystal mixtures, a generalized thermodynamic model has been developed in the framework of a combined Flory-Huggins free energy for isotropic mixing, Maier-Saupe free energy for orientational ordering, McMillan free energy for smectic ordering, Chandrasekhar-Clark free energy for hexagonal ordering, and phase field free energy for crystal solidification. Although nematic constituents have no smectic phase, the complexation between these constituent liquid crystal molecules in their mixture resulted in a more stable ordered phase such as smectic A or B phases. Various phase transitions of crystal-smectic, smectic-nematic, and nematic-isotropic phases have been determined by minimizing the above combined free energies with respect to each order parameter of these mesophases. By changing the strengths of anisotropic interaction and hexagonal interaction parameters, the present model captures the induced smectic A or smectic B phases of the binary nematic mixtures. Of particular importance is the fact that the calculated phase diagrams show remarkable agreement with the experimental phase diagrams of binary nematic liquid crystal mixtures involving induced smectic A or induced smectic B phase.  相似文献   

2.
In this paper, we propose a method to accelerate the crystallisation of nematic liquid crystal mixtures based on crystallisation theory. This method is to hold a nematic liquid crystal sample at a temperature suitable for crystal growth after aging it at a temperature suitable for nucleation. After we specified these temperatures of a nematic liquid crystal mixture using differential scanning calorimetry, we demonstrate that the two-temperature aging method is effective for the crystallisation of other nematic liquid crystal mixtures in which the crystal-liquid crystal transition temperature has so far been undetectable.  相似文献   

3.
Namil Kim 《Liquid crystals》2013,40(6):745-754
Experimental phase diagrams of binary mesogenic mixtures of reactive mesogenic diacrylate (RM257) monomer and low molar mass liquid crystals (E7) were determined by means of differential scanning calorimetry and optical microscopy. The combined free energy densities of Flory–Huggins for liquid–liquid demixing, Maier–Saupe for nematic ordering, and phase field free energy for crystal solidification was proposed to describe the phase diagrams of the starting E7/RM257 mixtures. The phase diagram thus constructed is an ideal mixing type, exhibiting a narrow loop of isotropic + nematic (I + N) coexistence region followed by the crystal + nematic (Cr1 + N) region in descending order of temperature. Of particular interest is the permanent fixation of the mesophase structures upon photopolymerisation of neat RM257 in the corresponding nematic and crystalline phases. Upon photopolymerisation of a low RM257 content mixture in both isotropic and nematic states, the nematic–isotropic transition of E7 was found to persist. The permanent structural anchoring is seen upon photo-curing of the 90/10 RM257/E7 mixture in the crystalline state.  相似文献   

4.
A macroscopic model for incompressible homogeneous (single phase) binary nematic mixtures, under isothermal conditions is given. The rheological model is a generalization of the standard Ericksen's nematorheological model for single component uniaxial rod-like nematic liquid crystals. Its special cases include single component orthorhombic biaxial nematics and single component uniaxial nematics. The theory is used to formulate rules for the rotational viscosity and the reactive parameter of nematic mixtures in the presence of weak flows. The predicted mixture rules for the reactive parameter and rotational viscosity are analysed as a function of concentration and rotational viscosity ratio for various monomeric and polymeric mixtures, and for rod-rod, disc-disc, and rod-disc nematic mixtures. The mixture rules are used to compute alignment phase diagrams and alignment transition (orientational instability) thresholds.  相似文献   

5.
《Liquid crystals》1998,25(6):733-744
Miscibility phase diagrams of mixtures of side-on side chain liquid crystalline polymers (s-SCLCP) and low molar mass liquid crystals (E48 and E44) have been established by means of polarized optical microscopy and light scattering. E48 and E44 are cyanobiphenyl-based eutectic nematic liquid crystal (LC) mixtures with nematic-isotropic transition temperatures of 93 and 105 C, respectively. The phase diagram of the s-SCLCP/E48 system reveals the coexistence of an isotropic nematic region and a single nematic phase in order of descending temperature. The single nematic phase suggests that the pair is miscible in the nematic region. On the other hand, the s-SCLCP/E44 mixture shows liquid liquid and nematic nematic coexistence phases, suggestive of the immiscibility character of the pair. These nematic phase diagrams of the s-SCLCP/E48 and s-SCLCP/E44 have been analysed in the context of the combined Flory-Huggins (FH) free energy for isotropic mixing and the Maier-Saupe (MS) free energy for nematic ordering of the mesogens. This combined FH/MS theory is capable of predicting the observed nematic phase diagrams consisting of liquid liquid, liquid nematic, nematic nematic, and the pure nematic regions. The change of colour accompanying the appearance and disappearance of the inversion walls may be attributed to the temperature dependence of birefringence.  相似文献   

6.
We present a mean-field theory to describe phase separations in mixtures of a nematic liquid crystal and a colloidal particle. The theory takes into account an orientational ordering of liquid crystals and a crystalline ordering of colloidal particles. We calculate phase diagrams on the temperature-concentration plane, depending on interactions between a liquid crystal and a colloidal surface and a coupling between nematic and crystalline ordering. We find various phase separation processes, such as a nematic-crystal phase separation and nematic-isotropic-crystal triple point. Inside binodal curves, we find new unstable and metastable regions which are important in phase ordering dynamics. We also find a stable nematic-crystalline (NC) phase, where colloidal particles dispersed in a nematic phase can form a crystalline structure. The coexistence between two NC phases with different concentrations can be appear though the coupling between nematic and crystalline ordering.  相似文献   

7.
A mean field theory is used to describe nematic phases of binary mixtures of biaxial molecules. Using a general pseudopotential consistent with the D2h symmetry of the constituent particles, the theory is used to calculate the elements of the order tensors necessary to describe the orientational order in binary mixtures in both uniaxial and biaxial nematic phases. For a single component, the model only requires one parameter, r2, a ratio of anisotropic interaction strengths, to predict the temperature dependence of the four order parameters. The temperature dependence of the orientational distribution functions is illustrated for both rod-like and plate-like molecules. For binary mixtures, three anisotropic interaction strengths, r1, r2, and r3, are needed to calculate the order parameters of both components as a function of concentration and temperature. The free energy is evaluated to predict the phase stability of the mixture. By systematically varying the anisotropic interaction strengths, temperature-concentration phase diagrams for a variety of molecular shapes are presented. The theoretical predictions suggest that binary mixtures of molecules with highly asymmetric shapes will display stable biaxial nematic phases.  相似文献   

8.
The effect of an external electrical field on phase behaviors is reported for polymer dispersed liquid crystal films of 4′‐pentyl‐4‐biphenylcarbonitrile/poly(methyl methacrylate) binary mixtures with various polymer molecular weights. The experimental results show that increasing the molecular weight of the polymer or the electrical field intensity can give rise to an increase in the phase‐transition temperature and a widening of the binary phase region. The lattice theory, regarding a binary system consisting of a rigid nematic liquid crystal and a random polymer, has been extended to the case in which an external electrical field is present. A comparison of the theoretical predictions with the experimental results has been carried out, and satisfactory agreement has been found. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1898–1906, 2007  相似文献   

9.
Phase equilibria of binary mixtures of liquid crystal and multiarm star acrylate derivatives have been established as a function of the number of acrylate arms by means of cloud point determination. Equilibrium phase diagrams of liquid crystal/multiarm acrylate derivatives have been calculated self-consistently in the framework of combined Flory-Huggins free energy of liquid-liquid demixing and Maier-Saupe free energy of nematic ordering. It was found experimentally that the phase diagram of the branched/star molecule/solvent shifts to elevated temperatures with an increasing number of acrylate arms. This movement of the coexistence line is attributed to the architectural effect contributing to the athermal entropic part of the chi interaction parameter. The present self-consistent solution has been tested satisfactorily with the observed phase diagrams of liquid crystal/acrylate systems.  相似文献   

10.
Phase diagrams for mixtures of liquid crystal (LC)/monomer with and without an external electrical field applied have been established using polarized light microscope (PLM).The (isotropic + nematic) coexistent phase region and (isotropic + isotropic) phase boundary of LC/monomer mixtures were observed to shift upward to higher temperatures when the external electrical field exists. It was found that the electrical field applied during the cross-linking polymerization has a significant influence on the phase diagrams for the LC/polymer mixtures by rendering the coexistent phase regions shift upward to higher temperatures. The influence of the external electrical field on the processes of the isotropic-isotropic phase separation and liquid crystal ordering in PDLC formation has also been investigated. The results revealed that both the processes could be highly accelerated by the electrical field.  相似文献   

11.
The full experimental phase diagrams of mixtures of the nematic liquid crystal 4.4'-azoxyanisole, (PAA), and n-tetracosane and of PAA and n-octadecane are given. Equilibria of a nematic phase with an isotropic phase, of two isotropic phases, and a reentrant isotropic phase could be observed directly. The experimental phase diagram is in qualitative agreement with the result derived from the Flory lattice model adopted for thermotropic systems.  相似文献   

12.
Mean field theory is used to calculate the temperature-composition phase diagram and component order parameters of binary nematic mixtures. Experimental values for the mixture order parameter of a binary nematic mixture close to the nematic/isotropic transition have been obtained from refractive index measurements. The experimental results qualitatively confirm the predictions of the theory.  相似文献   

13.
The phase behaviour and aggregation states of a binary mixture of a nematic liquid crystal and a chiral dopant have been investigated. The nematic liquid crystal E7 was miscible with the chiral dopant S811 over their entire concentration range. Binary E7/S811 mixtures formed the N* phase for S811 contents under 20%, and the SmA* phase for S811 contents between 40% and 90%. BP and TGBA* frustrated phases were found during cooling, for S811 contents between 25% and 35%. The helical pitches of the binary mixtures decreased with increasing chiral dopant content. From XRD profiles, the orientational ordering of the binary composites was found to increase with increasing chiral dopant content.  相似文献   

14.
We present a mean field theory to describe a helicoidal cholesteric phase for mixtures of a chiral nematic liquid crystal (LC) and a polymer chain as well as for pure chiral nematic LC molecules in the presence of a longitudinal external field parallel to the pitch axis of a cholesteric (Ch) phase. The free energy of the helicoidal Ch phase (ChH) is derived as a function of a usual orientational order parameter and an order parameter of the ChH phase. On increasing the strength of the external field, we find that the Ch phase changes to the nematic (N) phase through the ChH phase. Depending on the temperature and the strength of the external field, we find the second-order NChH and ChH–Ch phase transitions and the first-order paranematic (pN)N, pNChH and pN–Ch phase transitions. We also predict phase diagrams in mixtures of a flexible polymer and a Ch LC molecule under the external field.  相似文献   

15.
We experimentally studied the nematic-isotropic phase transition of (a) binary mixtures consisting of nematic and racemic liquid crystals and (b) binary mixtures consisting of positive and negative dielectric liquid crystals. We observed that the phase transition temperature is very sensitive to the chemical structures of the constituent components. We also used Maier-Saupe theory to calculate the transition temperature of binary mixtures. By fitting the experimental data, we obtained the interaction coupling constant between the constituent components.  相似文献   

16.
Model calculations of phase diagrams of side chain liquid crystal polymers (SCLCP) and low molecular weight liquid crystals (LMWLC) are presented. The polymer is assumed to have grafted side chain units characterized by a nematic‐isotropic transition temperature TNI 2, and the LMWLC presents also a similar transition at a temperature TNI 1 . The model calculations can accommodate for the cases where the latter two temperatures are comparable or widely different. For the sake of illustration, the case TNI 1 = 60°C and TNI 2 = 80°C is adopted here. The main point of interest here is to perform a comparative study of the equilibrium phase diagrams of SCLCP made either of linear free chains or crosslinked chains forming a single network. To our knowledge this is the first comparative study of the phase behavior of binary nematic mixtures involving linear and crosslinked polymer matrices which permits to clearly identify the effects of crosslinks present in the polymer matrix. The crosslinks attribute elasticity to the polymer constituent which induces important distortions in the phase diagram. To highlight these distortions, examples of hypothetical binary nematic mixtures are chosen involving both linear and crosslinked polymers with side chain mesogen units. The quadrupole interaction parameter between the two nematogens is related to individual parameters via a geometric average ν212 = κν11ν22 with a coupling parameter κ. Different values of this parameter are considered and the impact of coupling strength on the phase diagram is discussed for crosslinked and linear polymers.  相似文献   

17.
Qualitative phase diagrams were constructed using the contact method for binary mixtures of several chemically-distinct low molar mass nematogens (LMMN) with a main chain liquid crystal polymer (TPB-x) which has a mesogenic group, 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxy phenyl) butane, separated by flexible alkyl spacers of variable length, x. Several interesting effects were observed. TPB-x was found to exhibit an odd-even variation in miscibility in the nematic state (2n + 1 = miscible, 2n=immiscible) with 4'-pentyl-4-cyanobiphenyl (5CB), but not with 4'-pentyloxy-4-cyanobiphenyl (5OCB) in which most polymers were completely miscible. On prolonged isothermal annealing in the biphasic region in 5CB, TPB-2n exhibited spherulitic crystallization of the liquid crystal polymer. These observations are shown to be qualitatively consistent with a modification of the Flory-Huggins theory by Brochard et al.  相似文献   

18.
《Liquid crystals》1997,22(3):317-326
A perturbed hard-sphere-chain (PHSC) equation of state is presented to compute nematicisotropic equilibria for thermotropic liquid crystals, including mixtures. The equation of state consists of an isotropic term and an anisotropic term given by the Maier-Saupe theory whose contribution disappears in the isotropic phase. The isotropic contribution is the recently presented PHSC equation of state for normal fluids and polymers which uses a reference equation of state for athermal hard-sphere chains and a perturbation theory for the squarewell fluid of variable well width. The PHSC equation of state gives excellent correlations of pure-component pressure-volume-temperature data in the isotropic region and, combined with the Maier-Saupe theory, correlates the dependence of nematic-isotropic transition temperature on the pressure. Theory also predicts a nematic-isotropic biphasic region and liquid-liquid phase separation in a temperature-composition diagram of binary mixtures containing a nematic liquid crystal and a normal fluid or polymer. Theory and experiment show good agreement for pure fluids as well as for mixtures.  相似文献   

19.
An experimental phase diagram for two types of nematic liquid crystals and their binary mixtures was established by polarised optical microscopy and differential scanning calorimetry methods. The mixtures comprised a tolane-base liquid crystal, 4-heptyl-3-fluoro-4-isothiocyanatotolane (7TOLF), and a biphenyl-base nematogen, 4-heptyl-3-fluoro-4-isothiocyanatobiphenyl (7BF). The static Kerr effect and third-order non-linearity were investigated for 7TOLF and 7BF and their nematic mixtures within the isotropic phase. Both the compounds have a positive and large Kerr constant. The second-order phase-transition temperatures, T?, were determined for these mixtures. The linear dependence of (T - T?)??1 on the Kerr constant is found to be in good agreement with the predications of the Landau–de Gennes model. The third-order non-linear susceptibility,χ(3), values were determined for these mixtures.  相似文献   

20.
Two binary mixtures of polar liquid crystal materials were previously reported to exhibit three incommensurate smectic A phases predicted for such materials on the basis of phenomenological theory. Results of our recent high-resolution X-ray scattering experiments show that no incommensurate phases exist in the two systems. Wide coexistence regions are found at first order transitions between various frustrated smectic phases of these mixtures. These regions were previously identified as the incommensurate smectic A phases. The phase diagrams of the two systems determined with high-resolution X-ray technique are shown to be in excellent agreement with Baroisa-Prost-Lubensky theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号