首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The regular approximation to the normalized elimination of the small component (NESC) in the modified Dirac equation has been developed and presented in matrix form. The matrix form of the infinite-order regular approximation (IORA) expressions, obtained in [Filatov and Cremer, J. Chem. Phys. 118, 6741 (2003)] using the resolution of the identity, is the exact matrix representation and corresponds to the zeroth-order regular approximation to NESC (NESC-ZORA). Because IORA (=NESC-ZORA) is a variationally stable method, it was used as a suitable starting point for the development of the second-order regular approximation to NESC (NESC-SORA). As shown for hydrogenlike ions, NESC-SORA energies are closer to the exact Dirac energies than the energies from the fifth-order Douglas-Kroll approximation, which is much more computationally demanding than NESC-SORA. For the application of IORA (=NESC-ZORA) and NESC-SORA to many-electron systems, the number of the two-electron integrals that need to be evaluated (identical to the number of the two-electron integrals of a full Dirac-Hartree-Fock calculation) was drastically reduced by using the resolution of the identity technique. An approximation was derived, which requires only the two-electron integrals of a nonrelativistic calculation. The accuracy of this approach was demonstrated for heliumlike ions. The total energy based on the approximate integrals deviates from the energy calculated with the exact integrals by less than 5 x 10(-9) hartree units. NESC-ZORA and NESC-SORA can easily be implemented in any nonrelativistic quantum chemical program. Their application is comparable in cost with that of nonrelativistic methods. The methods can be run with density functional theory and any wave function method. NESC-SORA has the advantage that it does not imply a picture change.  相似文献   

2.
Relativistic density functional theory (DFT) calculations of nuclear spin-spin coupling constants and shielding constants have been performed for selected transition metal (11th and 12th group of periodic table) and thallium cyanides. The calculations have been carried out using zeroth-order regular approximation (ZORA) Hamiltonian and four-component Dirac-Kohn-Sham (DKS) theory with different nonrelativistic exchange-correlation functionals. Two recent approaches for representing the magnetic balance (MB) between the large and small components of four-component spinors, namely, mDKS-RMB and sMB, have been employed for shielding tensor calculations and their results have been compared. Relativistic effects have also been analysed in terms of scalar and spin-orbit contributions at the two-component level of theory, including discussion of heavy-atom-on-light-atom effects for (1)J(CN), σ(C), and σ(N). The results for molecules containing metals from 4th row of periodic table show that relativistic effects for them are small (especially for spin-spin coupling constants). The biggest effects are observed for the 6th row where nonrelativistic theory reproduces only about 50%-70% of the two-component ZORA results for (1)J(MeC) and about 75% for heavy metal shielding constants. It is important to employ a full Dirac picture for calculations of heavy metal shielding constants, since ZORA reproduces only 75%-90% of the DKS results. Smaller discrepancies between ZORA-DFT and DKS are observed for nuclear spin-spin coupling constants. No significant differences are observed between the results obtained using mDKS-RMB and sMB approaches for magnetic balance in four-component calculations of the shielding constants.  相似文献   

3.
A previous relativistic shielding calculation theory based on the regular approximation to the normalized elimination of the small component approach is improved by the inclusion of the magnetic interaction term contained in the metric operator. In order to consider effects of the metric perturbation, the self-consistent perturbation theory is used for the case of perturbation-dependent overlap integrals. The calculation results show that the second-order regular approximation results obtained for the isotropic shielding constants of halogen nuclei are well improved by the inclusion of the metric perturbation to reproduce the fully relativistic four-component Dirac-Hartree-Fock results. However, it is shown that the metric perturbation hardly or does not affect the anisotropy of the halogen shielding tensors and the proton magnetic shieldings.  相似文献   

4.
A new algorithm for the iterative solution of the normalized elimination of the small component (NESC) method is presented that is less costly than previous algorithms and that is based on (1) solving the NESC equations for the uncontracted rather than contracted basis (??First-Diagonalize-then-Contract??), (2) a new iterative procedure for obtaining the NESC Hamiltonian (??iterative TU algorithm??), (3) the renormalization scheme connected to the picture change, and (4) a finite nucleus model with a Gaussian charge distribution. The accuracy of NESC energies, which match those of 4-component Dirac calculations, is demonstrated. Test calculations with CCSD(T), DFT, and large basis sets including high angular momentum basis functions (f,g,h,i) are presented to prove the general applicability of the new NESC algorithm. Comparison with other algorithms of solving the NESC equations are shortly discussed and time savings are presented.  相似文献   

5.
The analytical energy gradient of the normalized elimination of the small component (NESC) method is derived for the first time and implemented for the routine calculation of NESC geometries and other first order molecular properties. Essential for the derivation is the correct calculation of the transformation matrix U relating the small component to the pseudolarge component of the wavefunction. The exact form of ?U/?λ is derived and its contribution to the analytical energy gradient is investigated. The influence of a finite nucleus model and that of the picture change is determined. Different ways of speeding up the calculation of the NESC gradient are tested. It is shown that first order properties can routinely be calculated in combination with Hartree-Fock, density functional theory (DFT), coupled cluster theory, or any electron correlation corrected quantum chemical method, provided the NESC Hamiltonian is determined in an efficient, but nevertheless accurate way. The general applicability of the analytical NESC gradient is demonstrated by benchmark calculations for NESC/CCSD (coupled cluster with all single and double excitation) and NESC/DFT involving up to 800 basis functions.  相似文献   

6.
The convergence behavior of the iterative solution of the normalized elimination of the small component (NESC) method is investigated. A simple and efficient computational protocol for obtaining the exact positive-energy eigenvalues of the relativistic Hamiltonian starting from the energies obtained within the regular approximation is suggested. The protocol is based on the analysis of the relationship between the eigenvalues of the quasi-relativistic Hamiltonian in the regular approximation and the positive-energy eigenvalues of the exact relativistic Hamiltonian which was derived in the course of this work. This article is dedicated to Wim Nieuwpoort on the occasion of his 75th birthday.  相似文献   

7.
Hartree–Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange‐correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin‐orbit zeroth‐order regular approximation Hamiltonian in combination with the large Slater‐type basis set QZ4P as well as with the four‐component Dirac–Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization‐consistent basis sets aug‐pcSseg‐4 for He, Ne and Ar, aug‐pcSseg‐3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero‐point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ~2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ~500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ~100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible.  相似文献   

9.
A combination of the polarizable continuum model (PCM) and the hybrid quantum mechanics/molecular mechanics (QM/MM) methodology, PCM-MM/QM, is used to include the solute electronic polarization and then study the solvent effects on the low-lying n→π(?) excitation energy and the (15)N nuclear magnetic shielding of pyrazine and pyridazine in aqueous environment. The results obtained with PCM-MM/QM are compared with two other procedures, i.e., the conventional PCM and the iterative and sequential QM/MM (I-QM/MM). The QM calculations are made using density functional theory in the three procedures. For the excitation energies, the time-dependent B3LYP/6-311+G(d) model is used. For the magnetic shielding, the B3LYP/aug-pcS2(N)/pcS2(C,O,H) is used with the gauge-including atomic orbitals. In both cases, i.e., PCM-MM/QM and I-QM/MM, that use a discrete model of the solvent, the solute is surrounded by a first shell of explicit water molecules embedded by an electrostatic field of point charges for the outer shells. The best results are obtained including 28 explicit water molecules for the spectral calculations and 9 explicit water molecules for the magnetic shielding. Using the PCM-MM/QM methodology the results for the n→π(?) excitation energies of pyridazine and pyrazine are 32,070 ± 80 cm(-1) and 32,675 ± 60 cm(-1), respectively, in good agreement with the corresponding I-MM/QM results of 32,540 ± 80 cm(-1) and 32,710 ± 60 cm(-1) and the experimental results of 33,450-33,580 cm(-1) and 32,700-33,300 cm(-1). For the (15)N magnetic shielding, the corresponding numbers for the gas-water shifts obtained with PCM-MM/QM are 47.4 ± 1.3 ppm for pyridazine and 19.7 ± 1.1 ppm for pyrazine, compared with the I-QM/MM values of 53.4?±?1.3 ppm and 19.5 ± 1.2 ppm and the experimental results of 42-54 ppm and 17-22 ppm, respectively. The agreement between the two procedures is found to be very good and both are in agreement with the experimental values. PCM-MM/QM approach gives a good solute polarization and could be considered in obtaining reliable results within the expected QM/MM accuracy. With this electronic polarization, the solvent effects on the electronic absorption spectra and the (15)N magnetic shielding of the diazines in water are well described by using only an electrostatic approximation. Finally, it is remarked that the experimental and theoretical results suggest that the (15)N nuclear magnetic shielding of any diazine has a clear dependence with the solvent polarity but not directly with the solute-solvent hydrogen bonds.  相似文献   

10.
We report, for the first time, a prediction of the line shapes that would be observed in the (129)Xe nuclear magnetic resonance (NMR) spectrum of xenon in the cages of clathrate hydrates. We use the dimer tensor model to represent pairwise contributions to the intermolecular magnetic shielding tensor for Xe at a specific location in a clathrate cage. The individual tensor components from quantum mechanical calculations in clathrate hydrate structure I are represented by contributions from parallel and perpendicular tensor components of Xe-O and Xe-H dimers. Subsequently these dimer tensor components are used to reconstruct the full magnetic shielding tensor for Xe at an arbitrary location in a clathrate cage. The reconstructed tensors are employed in canonical Monte Carlo simulations to find the Xe shielding tensor component along a particular magnetic field direction. The shielding tensor component weighted according to the probability of finding a crystal fragment oriented along this direction in a polycrystalline sample leads to a predicted line shape. Using the same set of Xe-O and Xe-H shielding functions and the same Xe-O and Xe-H potential functions we calculate the Xe NMR spectra of Xe atom in 12 distinct cage types in clathrate hydrates structures I, II, H, and bromine hydrate. Agreement with experimental spectra in terms of the number of unique tensor components and their relative magnitudes is excellent. Agreement with absolute magnitudes of chemical shifts relative to free Xe atom is very good. We predict the Xe line shapes in two cages in which Xe has not yet been observed.  相似文献   

11.
The quantum mechanical current density induced in a molecule by an external magnetic field is invariant to translations of the coordinate system. This fundamental symmetry is exploited to formally annihilate the diamagnetic contribution to the current density via the approach of "continuous transformation of the origin of the current density-diamagnetic zero" (CTOCD-DZ). The relationships obtained by this method for the magnetic shielding at the nuclei are intrinsically independent of the origin of the coordinate system for any approximate computational scheme relying on the algebraic approximation. The authors report for the first time an extended series of origin-independent estimates of nuclear magnetic shielding constants using the CTOCD-DZ approach at the level of density functional theory (DFT) with four different types of functionals and unrelaxed coupled cluster singles and doubles linear response (CCSD-LR) theory. The results obtained indicate that in the case of DFT the procedure employed is competitive with currently adopted computational methods allowing for basis sets of gauge-including atomic orbitals, whereas larger differences between CTOCD-DZ and common origin CCSD-LR results are observed due to the incomplete fulfillment of hypervirial relations in standard CCSD-LR theory. It was found furthermore that the unrelaxed CCSD-LR calculations predict larger correlation corrections for the shielding constants of almost all nonhydrogen atoms in their set of molecules than the usual relaxed energy derivative CCSD calculations. Finally the results confirm the excellent performance of Keal and Tozer's third functional, in particular, for the multiply bonded systems with a lot of electron correlation, but find also that the simple local density functional gives even better results for the few singly bonded molecules in their study where correlation effects are small.  相似文献   

12.
Numerical calculations of relativistic effects on nuclear magnetic shielding constants sigma corresponding to all one-body operators obtained within a formalism developed in previous work were carried out. In this formalism, the elimination of small component scheme is applied to evaluate all quantities entering a four-component RSPT(2) expression of magnetic molecular properties. HX and CH3X (X=Br,I) were taken as model compounds. Calculations were carried out at the Hartree-Fock level for first-order quantities, and at the random-phase approximation (RPA) level for second- and third-order ones. It was found that values of sigma(X) are largely affected by several relativistic corrections not previously considered in the bibliography. sigma Values of the H nucleus are in close agreement with four-component RPA ones. Overall relativistic effects on the shift of sigma(X) from HX to CH3X are smaller than the nonrelativistic shifts.  相似文献   

13.
We present perturbational ab initio calculations of the nuclear-spin-dependent relativistic corrections to the nuclear magnetic resonance shielding tensors that constitute, together with the other relativistic terms reported by us earlier, the full leading-order perturbational set of results for the one-electron relativistic contributions to this observable, based on the (Breit-)Pauli Hamiltonian. These contributions are considered for the H(2)X (X = O,S,Se,Te,Po) and HX (X = F,Cl,Br,I,At) molecules, as well as the noble gas (Ne, Ar, Kr, Xe, Rn) atoms. The corrections are evaluated using the relativistic and magnetic operators as perturbations on an equal footing, calculated using analytical linear and quadratic response theory applied on top of a nonrelativistic reference state provided by self-consistent field calculations. The (1)H and heavy-atom nuclear magnetic shielding tensors are compared with four component, nearly basis-set-limit Dirac-Hartree-Fock calculations that include positronic excitations, as well as available literature data. Besides the easy interpretability of the different contributions in terms of familiar nonrelativistic concepts, the accuracy of the present perturbational scheme is striking for the isotropic part of the shielding tensor, for systems including elements up to Xe.  相似文献   

14.
An approximate procedure for the calculation of diamagnetic shielding in molecules is presented. The method proposed is based on the ‘complete neglect of differential overlap’ (CNDO) molecular wave functions and is formulated according to the zero differential overlap (ZDO) approximation. The results obtained with several CNDO-type wave functions for diatomic and polyatomic molecules are in very good agreement with non-empirical SCF calculations. The 14N diamagnetic shielding constants in several molecules were computed and some approximations usually adopted in the interpretation of 14N chemical shifts are critically discussed. It was shown that in some cases the observed 14N chemical shifts cannot be interpreted solely in terms of the paramagnetic contribution to the shielding constant.  相似文献   

15.
Two expressions for nuclear-magnetic-shielding tensor components based on analytically differentiating the electronic energy of a system are presented. The first is based on a second-order Douglas-Kroll-Hess approach, in which the off-diagonal block terms of the transformed Dirac Hamiltonian are diminished to second order with respect to both the electrostatic nuclear attraction potential V and the magnetic vector potential A. The second expression is based on the method of Barysz-Sadlej-Snijders, in which the off-diagonal block terms in the transformed Dirac Hamiltonian are completely eliminated with respect to purely V terms, while they are diminished to second order with respect to terms including A. The two approaches are applied to the calculation of nuclear magnetic shieldings of HX (X=F, Cl, Br, I), H2X (X=O, S, Se, Te), and noble gas X (X =He,Ne,Ar,Kr,Xe) systems with common gauge origins. The results show that relativistic corrections of higher than second order are negligibly small, except for the paramagnetic parts of I, Te, and Xe shieldings. The present calculations yield very large positive values for the anisotropy of proton shielding, deltasigma(H) = sigmaparallel(H)-sigmaperpendicular(H), of HI compared to previous reports. Unfortunately, no experimental values for the anisotropy of proton shielding in HI are available for verification.  相似文献   

16.
An efficient method for the calculation of nuclear magnetic resonance (NMR) shielding tensors is presented, which treats electron correlation at the level of second-order Mo?ller-Plesset perturbation theory. It uses spatially localized functions to span occupied and virtual molecular orbital spaces, respectively, which are expanded in a basis of gauge including atomic orbitals (GIAOs or London atomic orbitals). Doubly excited determinants are restricted to local subsets of the virtual space and pair energies with an interorbital distance beyond a certain threshold are omitted. Furthermore, density fitting is employed to factorize the electron repulsion integrals. Ordinary Gaussians are employed as fitting functions. It is shown that the errors in the resulting NMR shielding constant, introduced (i) by the local approximation and (ii) by density fitting, are very small or even negligible. The capabilities of the new program are demonstrated by calculations on some extended molecular systems, such as the cyclobutane pyrimidine dimer photolesion with adjacent nucleobases in the native intrahelical DNA double strand (ATTA sequence). Systems of that size were not accessible to correlated ab initio calculations of NMR spectra before. The presented method thus opens the door to new and interesting applications in this area.  相似文献   

17.
We present a combined molecular dynamics simulation and density functional theory investigation of the nuclear magnetic shielding constant of the (113)Cd(II) ion solvated in aqueous solution. Molecular dynamics simulations are carried out for the cadmium-water system in order to produce instantaneous geometries for subsequent determination of the nuclear magnetic shielding constant at the density functional theory level. The nuclear magnetic shielding constant is computed using a perturbation theory formalism, which includes nonrelativistic and leading order relativistic contributions to the nuclear magnetic shielding tensor. Although the NMR shielding constant varies significantly with respect to simulation time, the value averaged over increasing number of snapshots remains almost constant. The paramagnetic nonrelativistic contribution is found to be most sensitive to dynamical changes in the system and is mainly responsible for the thermal and solvent effects in solution. The relativistic correction features very little sensitivity to the chemical environment, and can be disregarded in theoretical calculations when a Cd complex is used as reference compound in (113)Cd NMR experiments, due to the mutual cancelation between individual relativistic corrections.  相似文献   

18.
A comprehensive investigation of selenium chemical shift tensors is presented. Experimentally determined chemical shift tensors were obtained from solid-state 77Se NMR spectra for several organic, organometallic, or inorganic selenium-containing compounds. The first reported indirect spin-spin coupling between selenium and chlorine is observed for Ph(2)SeCl(2) where 1J(77Se,35Cl)iso is 110 Hz. Selenium magnetic shielding tensors were calculated for all of the molecules investigated using zeroth-order regular approximation density functional theory, ZORA DFT. The computations provide the orientations of the chemical shift tensors, as well as a test of the theory for calculating the magnetic shielding interaction for heavier elements. The ZORA DFT calculations were performed with nonrelativistic, scalar relativistic, and scalar with spin-orbit relativistic levels of theory. Relativistic contributions to the magnetic shielding tensor were found to be significant for (NH4)2WSe4 and of less importance for organoselenium, organophosphine selenide, and inorganic selenium compounds containing lighter elements.  相似文献   

19.
20.
We present a gauge-origin independent method for the calculation of nuclear magnetic shielding tensors of molecules in a structured and polarizable environment. The method is based on a combination of density functional theory (DFT) or Hartree-Fock wave functions with molecular mechanics. The method is unique in the sense that it includes three important properties that need to be fulfilled in accurate calculations of nuclear magnetic shielding constants: (i) the model includes electron correlation effects, (ii) the model uses gauge-including atomic orbitals to give gauge-origin independent results, and (iii) the effect of the environment is treated self-consistently using a discrete reaction-field methodology. The authors present sample calculations of the isotropic nuclear magnetic shielding constants of liquid water based on a large number of solute-solvent configurations derived from molecular dynamics simulations employing potentials which treat solvent polarization either explicitly or implicitly. For both the (17)O and (1)H isotropic shielding constants the best predicted results compare fairly well with the experimental data, i.e., they reproduce the experimental solvent shifts to within 4 ppm for the (17)O shielding and 1 ppm for the (1)H shielding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号