首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the distribution statistics of side-chain grafting sites on the conformational properties of amphiphilic comblike macromolecules immersed in a solvent that is poor for the main chain and good for the side chains was studied. It was shown that the coil-globule transition for macromolecules with the protein-like distribution of side-chain grafting sites occurs at higher temperatures, wherein the size of the proteinlike macromolecules is generally smaller than that of the corresponding regular macromolecules. Regardless of distribution statistics of side-chain grafting sites, the coil-globule transition of comb macromolecules passes through the step of the formation of the beads-on-a-string conformation composed of micelle-like beads. The temperature dependence curves of the heat capacity exhibit at least two maximums associated with the coil-globule transition per se and the coalescence of the beads into a single globule. The coil-globule transition temperature is slightly dependent upon the degree of polymerization of the main chain and drops with a decrease in the degree of polymerization of the side chains. It was found that comb macromolecules can form spherical, disklike, or cylindrical globules, depending on the structural parameters.  相似文献   

2.
Summary: We studied coil-globule transitions in stiff-chain amphiphilic macromolecules via computer modeling and constructed phase diagrams for such molecules in terms of solvent quality and persistence length. We showed that the shape of the phase diagram essentially depends on the macromolecule degree of polymerization. Relatively short amphiphilic molecules always form a spherical globule in a poor solvent, and the coil-globule transition includes one or two intermediate conformations, depending on the chain's stiffness. These are a disk-like globule in case of high enough Kuhn segment length, and a pearl necklace-like structure of spherical micelles and a disk-like globule in case of relatively flexible chains. The phase diagram of a long stiff amphiphilic chain was found to be more complex still. Thus three specific regions can be distinguished in the poor solvent region, depending on the chain stiffness. These correspond to a cylindrical globule without any specific backbone ordering, a cylindrical globule containing blobs with collagen-like ordering of the chain, and co-existence of collagen-like and toroidal globules. In the intermediate transition region in this case, apart from the pearl necklace-like conformations with spherical micelles, necklace conformations can be also observed where the polymeric chain has collagen-like ordering within each bead.  相似文献   

3.
南照东  谭志诚  邢军 《中国化学》2005,23(7):823-828
The molar heat capacity of the azeotropic mixture composed of ethanol and toluene was measured by a high precision adiabatic calorimeter from 80 to 320 K. The glass transition and phase transitions of the azeotropic mixture were determined based on the heat capacity measurements. A glass transition at 103.350 K was found. A solid-solid phase transition at 127.282 K, two solid-liquid phase transitions at 153.612 and 160.584 K were observed, which correspond to the transition of metastable crystal to stable crystal of ethanol and the melting of ethanol and toluene, respectively. The thermodynamic functions and the excess ones of the mixture relative to the standard temperature 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.  相似文献   

4.
Discontinuous molecular dynamics simulations were used to study the coil-globule transition of a polymer in an explicit solvent. Two different versions of the model were employed, which are differentiated by the nature of monomer-solvent, solvent-solvent, and nonbonded monomer-monomer interactions. For each case, a model parameter lambda determines the degree of hydrophobicity of the monomers by controlling the degree of energy mismatch between the monomers and solvent particles. We consider a lambda-driven coil-globule transition at constant temperature. The simulations are used to calculate average static structure factors, which are then used to determine the scaling exponents of the system in order to determine the theta-point values lambda(theta) separating the coil from the globule state. For each model we construct coil-globule phase diagrams in terms of lambda and the particle density rho. Additionally, we explore for each model the effects of varying the range of the attractive interactions on the phase boundary separating the coil and globule phases. The results are analyzed in terms of a simple Flory-type theory of the collapse transition.  相似文献   

5.
Quantitative thermal analysis was carried out for tetra[methyleneoxycarbonyl(2,4,4-trimethyl)pentyl]methane. The ester has a glass transition temperature of 219 K and a melting temperature of 304 K. The heat of fusion is 51.3 kJ mol?1, and the increase in heat capacity at the glass transition is 250 J K?1 mol?1. The measured and calculated heat capacities of the solid and liquid states from 130 to 420 K are reported and a discussion of the glass and melting transitions is presented. The computation of the heat capacity made use of the Advanced Thermal Analysis System, ATHAS, using an approximate group-vibration spectrum and a Tarasov treatment of the skeletal vibrations. The experimental and calculated heat capacities of the solid ester were compared over the whole temperature range to detect changes in order and the presence of large-amplitude motion. An addition scheme for heat capacities of this and related esters was developed and used for the extrapolation of the heat capacity of the liquid state for this ester. The liquid heat capacity for the title ester is well represented by 691.1+1.668T [J K?1 mol?1]. A deficit in the entropy and enthalpy of fusion was observed relative to values estimated from empirical addition schemes, but no gradual disordering was noted outside the transition region. The final interpretation of this deficit of conformational entropy needs structure and mobility analysis by solid state13C NMR and X-ray diffraction. These analyses are reported in part II of this investigation.  相似文献   

6.
The relation of the coil-globule transition in macromolecules consisting of amphiphilic and hydrophilic monomer units to the radius of action of the interaction potential is investigated by the method of computer-assisted experiments. The internal structure of globules formed by such macromolecules is significantly dependent on the radius of action of the potential. In the case of the long-range potential, the globule is characterized by the blob structure, while in the case of the short-range potential, a quasi-helical structure forms. In this structure, the skeleton of a macromolecule forms a helical turn, and the direction of twisting may vary from one turn to another. The coil-globule transition in such macromolecules proceeds through formation of the necklace conformation from quasi-helical micelle beads. For sufficiently long macromolecules, the dimensions of such globules are linearly dependent on the degree of polymerization.  相似文献   

7.
The heat capacity of poly(trimethylene terephthalate) (PTT) has been analyzed using temperature‐modulated differential scanning calorimetry (TMDSC) and compared with results obtained earlier from adiabatic calorimetry and standard differential scanning calorimetry (DSC). Using quasi‐isothermal TMDSC, the apparent reversing and nonreversing heat capacities were determined from 220 to 540 K, including glass and melting transitions. Truly reversible and time‐dependent irreversible heat effects were separated. The extrapolated vibrational heat capacity of the solid and the total heat capacity of the liquid served as baselines for the analysis. As one approaches the melting region from lower temperature, semicrystalline PTT shows a reversing heat capacity, which is larger than that of the liquid, an observation that is common also for other polymers. This higher heat capacity is interpreted as a reversible surface or bulk melting and crystallization, which does not need to undergo molecular nucleation. Additional time‐dependent, reversing contributions, dominating at temperatures even closer to the melting peak, are linked to reorganization and recrystallization (annealing), while the major melting is fully irreversible (nonreversing contribution). © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 622–631, 2000  相似文献   

8.
Lignins are hydrophobic, branched polymers that regulate water conduction and provide protection against chemical and biological degradation in plant cell walls. Lignins also form a residual barrier to effective hydrolysis of plant biomass pretreated at elevated temperatures in cellulosic ethanol production. Here, the temperature-dependent structure and dynamics of individual softwood lignin polymers in aqueous solution are examined using extensive (17 μs) molecular dynamics simulations. With decreasing temperature the lignins are found to transition from mobile, extended to glassy, compact states. The polymers are composed of blobs, inside which the radius of gyration of a polymer segment is a power-law function of the number of monomers comprising it. In the low temperature states the blobs are interpermeable, the polymer does not conform to Zimm/Stockmayer theory, and branching does not lead to reduction of the polymer size, the radius of gyration being instead determined by shape anisotropy. At high temperatures the blobs become spatially separated leading to a fractal crumpled globule form. The low-temperature collapse is thermodynamically driven by the increase of the translational entropy and density fluctuations of water molecules removed from the hydration shell, thus distinguishing lignin collapse from enthalpically driven coil-globule polymer transitions and providing a thermodynamic role of hydration water density fluctuations in driving hydrophobic polymer collapse. Although hydrophobic, lignin is wetted, leading to locally enhanced chain dynamics of solvent-exposed monomers. The detailed characterization obtained here provides insight at atomic detail into processes relevant to biomass pretreatment for cellulosic ethanol production and general polymer coil-globule transition phenomena.  相似文献   

9.
An adiabatic heat capacity study of poly(diethylsiloxane) confirms that it has a single glass transition occurring at 130°K, the lowest glass transition reported to date for a high molecular weight polymer. The two previously reported glass transitions are first-order thermodynamic peaks whose location is dependent upon prior thermal history. Combination of these data with low-temperature x-ray diffraction indicates that the transitions in this temperature range are related to a crystal–crystal transformation. A crystal melting transition is observed near 270°K. In addition an anomalous rise in heat capacity near 60°K suggests a sub-glass transition of unknown origin.  相似文献   

10.
The conformations of protonated RA15K, RA20K and RA15H (R = arginine, A = alanine, K = lysine, and H = histidine) have been examined in the gas phase as a function of temperature. These peptides were designed so that intramolecular proton transfer will trigger conformational changes between a helix (proton sequestered at the C-terminus) and globule (proton sequestered at the N-terminus). Kinetically controlled structural transitions occur below 400 K (from helix to globule for RA15H, and from globule to helix for RA15K and RA20K). As the temperature is raised, the compact globule found at room temperature expands, accesses more configurations, and becomes entropically favored. At around 500 K, the RA15K and RA20K helices undergo a melting transition. The transition is broad, as expected for a phase transition in a finite system, and becomes narrower as the peptide size increases. In the helical conformation, the two basic residues are well separated; as a result, the proton transfer necessary to drive the melting transition probably involves a mobile proton. For doubly protonated RA15K, a dumbbell-like conformation (resulting from repulsion between the two protonated basic residues) is found at high temperature.  相似文献   

11.
Structural changes in the local conformation of poly(N-isopropylacrylamide) (PNiPA) during the thermally and solvent-induced coil-globule transitions in an aqueous solution were studied by using attenuated total reflection / infrared (ATR/IR) spectroscopy combined with density functional theory (DFT) calculation. DFT calculation makes it possible to connect the spectral changes observed during the transitions with the structural changes of the local conformation of polymer chains. The results suggest that some of the intramolecular C=O···H-N hydrogen bonds of amide groups are broken, and the changes in local conformations occur during the coil-globule transitions of PNiPA. In this paper, an overview of our recent studies on the coil-globule transitions of PNiPA is given for introducing a new idea that may explain the stimulus sensitivities of PNiPA in solutions; the solubility of segments concerning with the local conformation of repeating monomer units is changed by an external perturbation, and then the polymer system shows the coil-globule transition.  相似文献   

12.
We present calculations of the bulk modulus, heat capacity, and the period of the breathing mode for spherical nanoparticles following excitation by ultrafast laser pulses. The bulk modulus and heat capacities both exhibit clear transitions upon bulk melting of the particles. Equilibrium calculations of the heat capacity show that the melting transition is sharper and occurs at a lower temperature than one would observe from an ultrafast experiment. We also observe an intriguing splitting in the low-frequency spectra of the nanoparticles and analyze this splitting in terms of Lamb's classical theory of elastic spheres. We conclude that the particles either (1) melt during the observation period following laser excitation or (2) melt an outer shell while maintaining a crystalline core. Both mechanisms for melting are commensurate with our observations.  相似文献   

13.
Molecular dynamics simulations are used to study the coil-globule transition for a system composed of a bead-spring polymer immersed in an explicitly modeled solvent. Two different versions of the model are used, which are differentiated by the nature of monomer-solvent, solvent-solvent, and nonbonded monomer-monomer interactions. For each case, a model parameter lambda determines the degree of hydrophobicity of the monomers by controlling the degree of energy mismatch between the monomers and solvent particles. We consider a lambda-driven coil-globule transition at constant temperature. The simulations are used to calculate average static structure factors, which are then used to determine the scaling exponents of the system in order to determine the theta-point values lambdatheta separating the coil from the globule states. For each model we construct coil-globule phase diagrams in terms of lambda and the particle density rho. The results are analyzed in terms of a simple Flory-type theory of the collapse transition. The ratio of lambdatheta for the two models converges in the high density limit exactly to the value predicted by the theory in the random mixing approximation. Generally, the predicted values of lambdatheta are in reasonable agreement with the measured values at high rho, though the accuracy improves if the average chain size is calculated using the full probability distribution associated with the polymer-solvent free energy, rather than merely using the value obtained from the minimum of the free energy.  相似文献   

14.
Summary: The properties of a single semiflexible mushroom chain at a plane surface with a long-ranged attracting potential are studied by means of lattice Monte Carlo computer simulation using the bond fluctuation model, configurational bias algorithm for chain re-growing and the Wang-Landau sampling technique. We present the diagram of states in variables temperature T vs. strength of the adsorption potential, εw, for a quite short semiflexible chain consisting of N = 64 monomer units. The diagram of states consists of the regions of a coil, liquid globule, solid isotropic globule, adsorbed coil and cylinder-like liquid-crystalline globule. At low values of the adsorption strength εw the coil–globule and the subsequent liquid–solid globule transitions are observed upon decreasing temperature below the adsorption transition point. At high values of εw these two transitions change into a single transition from an adsorbed coil to a cylinder-like liquid-crystalline solid globule. We conclude that for a semiflexible chain the presence of a plane attracting surface favors the formation of a globule with internal liquid-crystalline ordering of bonds.  相似文献   

15.
The low‐temperature heat capacity of poly(butylene terephthalate) (PBT) was measured from 5 to 330 K. The experimental heat capacity of solid PBT, below the glass transition, was linked to its approximate group and skeletal vibrational spectrum. The 21 skeletal vibrations were estimated with a general Tarasov equation with the parameters Θ1 = 530 K and Θ2 = Θ3 = 55 K. The calculated and experimental heat capacities of solid PBT agreed within better than ±3% between 5 and 200 K. The newly calculated vibrational heat capacity of the solid from this study and the liquid heat capacity from the ATHAS Data Bank were applied as reference values for a quantitative thermal analysis of the apparent heat capacity of semicrystalline PBT between the glass and melting transitions as obtained by differential scanning calorimetry. From these results, the integral thermodynamic functions (enthalpy, entropy, and Gibbs function) of crystalline and amorphous PBT were calculated. Finally, the changes in the crystallinity with the temperature were analyzed. With the crystallinity, a baseline was constructed that separated the thermodynamic heat capacity from cold crystallization, reorganization, annealing, and melting effects contained in the apparent heat capacity. For semicrystalline PBT samples, the mobile‐amorphous and rigid‐amorphous fractions were estimated to complete the thermal analysis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4401–4411, 2004  相似文献   

16.
Transition of a single duplex DNA between elongated coil and condensed globule has been studied by the technique of single molecular observation with fluorescence microscopy. It has become clear that individual DNA chains undergo first-order phase transition. We have observed the time-dependent change of the DNA structure accompanied with the phase transition from coil to globule. The speed of the compaction was found to be almost constant along the DNA chain. It is indicated that the coil-globule transition exhibits the phenomenon of “nucleation and growth”. The process of the decollapse of a single DNA has also been observed, the time dependence of the long axis length being described as l ∼ t1.8.  相似文献   

17.
The coil-globule transition in rigid-chain amphiphilic macromolecules was studied by means of computer simulation, and the phase diagrams for such molecules in the solvent quality-persistence length coordinates were constructed. It was shown that the type of phase diagram depends to a substantial extent on the degree of polymerization of a macromolecule. Relatively short amphiphilic macromolecules in the poor-solvent region always form a spherical globule, with the transition to this globule involving one or two intermediate conformations. These are the disk globule if the Kuhn segment is relatively large and the string of spherical micelles or the disk globule in the case of relative flexible chains. The phase diagram of a long rodlike amphiphilic chain turned out to be even more complex. Namely, three characteristic regions were distinguished in the region of a poor solvent, depending on the chain rigidity: the region of a cylindrical globule without certain order in the main chain, the region of the cylindrical globule with blobs having the collagen ordering of the chain, and the region of coexistence of collagen-like and toroidal globules. In the intermediate transitional region, not only conformations of strings of spherical micelle beads but also the necklace conformations in which the polymer chain in each bead has collagen ordering can occur in this case.  相似文献   

18.
19.
Thermochemical properties of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid [EMim]NTf2 containing moisture absorbed from the atmosphere (0.242 wt %) are investigated. The phase behavior and thermal stability relative to salt dried in vacuum are studied by means of thermogravimetry and differential scanning calorimetry at different heating and cooling rates. The glass transition, crystallization, and melting temperatures, the enthalpies of phase transitions, and the changes in heat capacity during the formation of glass are determined. It is established that the absorbed water crystallizes at a temperature of around ?40.6°C and has virtually no effect on the thermal stability and phase behavior of the salt. Rapid cooling results in the ionic liquid transitioning into the glass state at ?91.7 °C and the formation of three mesophases with different melting temperatures; one crystalline modification that melts at a temperature of ?19.3°C forms upon slow cooling.  相似文献   

20.
The coil-globule transition in copolymers composed of amphiphilic and hydrophilic monomer units has been studied by the computer simulation technique. It has been shown that the structure of globules formed in such systems substantially depends on the rate at which the solvent quality worsens. The globule resulting from slow cooling is cylindrical, and its core contains a large amount of hydrophilic groups. The globule formed upon rapid cooling takes the helical conformation, in which all hydrophilic groups are displaced to the periphery. One helix turn of such globules contains 3–5 units. In both cases, the backbone of the polymer chain forms a typical zigzag-shaped structure with an average angle between neighboring bond vectors of about 60°. This fact implies that globules of copolymers consisting of amphiphilic and hydrophilic units comprise secondary structure components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号