首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The rotation-vibration spectrum of DCOOD has been recorded in the carbonyl stretch (nu(3)) region. Using a standard S-reduced Watson Hamiltonian in the I(r) representation, 225 lines could be fitted to a vibrational-rotational band. A full set of molecular constants was obtained. The nu(3) band is found to be strongly perturbed in the K(a): 1<--1 and K(a): 2<--2 subband. The perturbation is attributed to a Fermi resonance with the 2nu(8) overtone band and Coriolis coupling to a combination band (nu(4)+nu(7)). The band center is determined to be 1725.1218(1) cm(-1) which is more than 10 cm(-1) shifted compared to previous studies.  相似文献   

2.
Spectra of jet-cooled methanol in the overtone and combination region from 5000 to 14 000 cm(-1) have been obtained by means of infrared laser-assisted photofragment spectroscopy. Many of the observed features are assigned to combination bands of the type nnu(1)+nu(6), nnu(1)+nu(8), and nnu(1)+nu(6)+nu(8) (n=1,2,3), where nu(1) is the OH stretch, nu(6) is the OH bend, and nu(8) is the CO stretch. These bands show sharp torsion-rotation structure with features as narrow as 0.1 cm(-1). We also observe CH stretch overtones that are weaker than the OH containing combination bands and lack distinct torsion-rotation structure above v(CH)=2. The extent of observed structure on these bands allows us to place limits on the intramolecular vibrational energy redistribution decay rates in the upper vibrational states. We report a global fit of the observed band centers to a simple expression involving low-order anharmonicity constants.  相似文献   

3.
Ozonization reaction of ethene in neat film at 77 K was performed. Separation of ethene secondary ozonide from the other products of the reaction was performed by continuous pumping of the reactor. Only the products, which evaporated from the walls of the reactor at 185 K, were transferred to the gas cell. The high-resolution infrared absorption spectrum of gaseous ethene secondary ozonide (C(2)H(4)O(3)) in a static gas long-path absorption cell has been recorded in the 900-1100 cm(-1) spectral region at 185 K. The spectral resolution was 0.003 cm(-1). Analyses of the nu(7)(A) band at 1037.0 cm(-1), the nu(8)(A) band at 956.1 cm(-1), and the nu(18)(B) band at 1082.1 cm(-1) have been performed using the Watson Hamiltonian model (A, reduction; III(r), representation). A set of ground-state rotational and quartic centrifugal distortion constants have been obtained, and upper state spectroscopic constants have been determined for the bands investigated. A local resonance observed in nu(18) is explained as c-Coriolis interaction with nu(10) + nu(11).  相似文献   

4.
5.
High-resolution (0.001 cm(-1)) coherent anti-Stokes Raman spectroscopy (CARS) has been used to study the nu1 symmetric CO stretching mode of the quasi-linear molecule carbon suboxide, C3O2. Q-branch transitions are seen that originate from the ground state and from thermally populated levels of the nu7 CCC bending mode, which is of unusually low frequency. The intensity variation of the Q-branch features on cooling to about 120 K in a jet expansion requires the reversal of the order of assignment given in a previous Raman study at low resolution. The identification of the nu1 sigma(g)+ <-- sigma(g)+ transition from the ground state is confirmed by the absence of J(odd) Q-branch lines in the resolved CARS spectrum. Analysis of this band in terms of a quasi-linear model gives a good fit to the observed transitions and leads to vibrational-rotational parameters (in cm(-1)) of nu1 = 2199.9773(12) and (B' - B') = -2.044(6) x 10(-4). Other transitions originating from higher nu7 levels occur at only slightly lower wavenumber values and permit the calculation of the double minimum potential in the Q7 bending coordinate. The results indicate that the ground-state barrier to linearity (21.5 cm(-1)) increases by only 0.6 cm(-1) when the CO symmetric stretch is excited.  相似文献   

6.
We show that it is possible to both directly measure and directly calculate Fermi resonance couplings in benzene. The measurement method used was a particular form of two-dimensional infrared spectroscopy (2D-IR) known as doubly vibrationally enhanced four wave mixing. By using different pulse orderings, vibrational cross peaks could be measured either purely at the frequencies of the base vibrational states or split by the coupling energy. This capability is a feature currently unique to this particular form of 2D-IR and can be helpful in the decongestion of complex spectra. Five cross peaks of the ring breathing mode nu13 with a range of combination bands were observed spanning a region of 1500-4550 cm(-1). The coupling energy was measured for two dominant states of the nu13+nu16 Fermi resonance tetrad. Dephasing rates were measured in the time domain for nu13 and the two (nu13+nu16) Fermi resonance states. The electronic and mechanical vibrational anharmonic coefficients were calculated to second and third orders, respectively, giving information on relative intensities of the cross peaks and enabling the Fermi resonance states of the combination band nu13+nu16 at 3050-3100 cm(-1) to be calculated. The excellent agreement between calculated and measured spectral intensities and line shapes suggests that assignment of spectral features from ab initio calculations is both viable and practicable for this form of spectroscopy.  相似文献   

7.
High resolution infrared spectra of nitric acid have been recorded in the first OH overtone region under jet-cooled conditions using a sequential IR-UV excitation method. Vibrational bands observed at 6933.39(3), 6938.75(4), and 6951.985(3) cm(-1) (origins) with relative intensities of 0.42(1), 0.38(1), and 0.20(1) are attributed to strongly mixed states involved in a Fermi resonance. A vibrational deperturbation analysis suggests that the optically bright OH overtone stretch (2nu1) at 6939.2(1) cm(-1) is coupled directly to the nu1 + 2nu2 state at 6946.4(1) cm(-1) and indirectly to the 3nu2 + nu3 + nu7 state at 6938.5(1) cm(-1). Both the identity of the zero-order states and the indirect coupling scheme are deduced from complementary CCSD(T) calculations in conjunction with second-order vibrational perturbation theory. The deperturbation analysis also yields the experimental coupling between 2nu1 and nu1 + 2nu2 of -6.9(1) cm(-1), and that between the two dark states of +5.0(1) cm(-1). The calculated vibrational energies and couplings are in near quantitative agreement with experimentally derived values except for a predicted twofold stronger coupling of 2nu1 to nu1 + 2nu2. Weaker coupling of the strongly mixed states to a dense background of vibrational states via intramolecular vibrational energy redistribution is evident from the experimental linewidths of 0.08 and 0.25 cm(-1) for the higher energy and two overlapping lower energy bands, respectively. A comprehensive rotational analysis of the higher energy band yields spectroscopic parameters and the direction of the OH overtone transition dipole moment.  相似文献   

8.
Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 <-- nu1' = 1 transition. Rotational structure in the resulting vibrational action spectrum confirms that V+(OCO) is linear and gives nu1' = 2392.0 cm(-1). The OCO antisymmetric stretch frequency in the excited electronic state is nu1' = 2368 cm(-1). Both show a blue shift from the value in free CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.  相似文献   

9.
The high-resolution infrared emission spectrum of BeF2 vapor at 1000 degrees C was rotationally analyzed with the assistance of large-scale ab initio calculations using the coupled-cluster method including single and double excitations and perturbative inclusion of triple excitations, in conjunction with correlation-consistent basis sets up to quintuple-zeta quality. The nu3 fundamental band, the nu1+nu2, nu1+nu3, and 2nu2+nu3 combination bands, and 18 hot bands were assigned. The symmetric stretching (nu1), bending (nu2), and antisymmetric stretching (nu3) mode frequencies were determined to be 769.0943(2), 342.6145(3), and 1555.0480(1) cm-1, respectively, from the band origins of the nu3, nu1+nu3, and nu1+nu2 bands. The observed vibrational term values and B rotational constants were fitted simultaneously to an effective Hamiltonian model with Fermi resonance taken into account, and deperturbed equilibrium vibrational and rotational constants were obtained for BeF2. The equilibrium rotational constant (Be) was determined to be 0.235 354(41) cm-1, and the associated equilibrium bond distance (re) is 1.3730(1) A. The results of our ab initio calculations are in remarkably good agreement with those of our experiment, and the calculated value was 1.374 A for the equilibrium bond distance (re). As in the isoelectronic CO2 molecule, the Fermi resonance in BeF2 is very strong, and the interaction constant k122 was found to be 90.20(4) cm-1.  相似文献   

10.
High resolution (0.004 and 0.01 cm(-1) instrumental bandwidth) interferometric Fourier transform infrared spectra of (14)NH2D and (14)ND2H were measured on a Bomem DA002 spectrometer in a supersonic jet expansion and at room temperature. We report the analysis of the bending fundamentals of (14)NH2D with term values Tv(s)=1389.9063(2) cm(-1) and Tv(a)=1390.4953(2) cm(-1) for the nu(4b) fundamental and Tv(s)=1605.6404(7) cm(-1) and Tv(a)=1591.0019(7) cm(-1) for the nu(4a) fundamental, and of (14)ND2H with term values of Tv(s)=1233.3740(2) cm(-1) and Tv(a)=1235.8904(2) cm(-1) for the nu(4a) fundamental and Tv(s)=1461.7941(9) cm(-1) and Tv(a)=1461.9918(19) cm(-1) for the nu(4b) fundamental. In all cases Tv(s) gives the position of the symmetric inversion sublevel (with positive parity) and Tv(a) the position of the antisymmetric inversion sublevel (with negative parity). The notation for the fundamentals nu(4a) and nu(4b) is chosen by correlation with the degenerate nu(4) mode in the C(3v) symmetric molecules NH3 and ND3. The degeneracy is lifted in Cs symmetry and a indicates the symmetric, b the antisymmetric normal mode with respect to the Cs symmetry plane in NH2D and ND2H. Assignments were established with certainty by means of ground state combination differences. About 20 molecular parameters of the effective S-reduced Hamiltonian could be determined accurately for each fundamental. In particular, the effect of Fermi resonances of the 2nu(2) overtone with the nu(4a) bending mode was observed, leading to an increased inversion splitting in the case of ND2H and to a strongly increased inversion splitting and an inverted order of the two inversion levels in NH2D. Rotational perturbations observed with the nu(4b) bending fundamentals are probably due to Coriolis interactions with the inversion overtone 2nu(2). The results are important for understanding isotope effects on the inversion in ammonia as well as its selective catalysis and inhibition by excitation of different vibrational modes, as treated by quantum dynamics on high dimensional potential hypersurfaces of this molecule.  相似文献   

11.
Hydrogen trioxy (HOOO) and its deuterated analog (DOOO) have been generated in a supersonic free-jet expansion through association of photolytically generated OH or OD and molecular oxygen. The radicals were detected using infrared action spectroscopy, a highly sensitive double resonance technique. Rotationally resolved spectra of combination bands of HOOO and DOOO comprising one quantum of OH or OD stretch (nu(1)) and one quantum of a lower frequency mode (nu(1)+nu(n) where n=3-6), including HDOO bend (nu(3)), OOO bend (nu(4)), central OO stretch (nu(5)), and HDOOO torsion (nu(6)), have been observed and assigned to the trans conformer. All but one of these bands are accompanied by unstructured features which are tentatively assigned to the corresponding vibration of the cis conformer. In total, five additional bands of HOOO and four of DOOO have been recorded and assigned. These data represent the first gas-phase observation of the low-frequency modes of HOOO and DOOO and they are found to differ significantly from previous matrix studies and theoretical predictions. Accurate knowledge of the vibrational frequencies is crucial in assessing thermochemical properties of HOOO and present possible means of detection in the atmosphere.  相似文献   

12.
Rotational analyses have been carried out for the overtones of the nu(4) (torsion) and nu(6) (in-plane cis-bend) vibrations of the A (1)A(u) state of C(2)H(2). The v(4)+v(6)=2 vibrational polyad was observed in high-sensitivity one-photon laser-induced fluorescence spectra and the v(4)+v(6)=3 polyad was observed in IR-UV double resonance spectra via the ground state nu(3) (Sigma(+) (u)) and nu(3)+nu(4) (Pi(u)) vibrational levels. The structures of these polyads are dominated by the effects of vibrational angular momentum: Vibrational levels of different symmetry interact via strong a-and b-axis Coriolis coupling, while levels of the same symmetry interact via Darling-Dennison resonance, where the interaction parameter has the exceptionally large value K(4466)=-51.68 cm(-1). The K-structures of the polyads bear almost no resemblance to the normal asymmetric top patterns, and many local avoided crossings occur between close-lying levels with nominal K-values differing by one or more units. Least squares analysis shows that the coupling parameters change only slightly with vibrational excitation, which has allowed successful predictions of the structures of the higher polyads: A number of weak bands from the v(4)+v(6)=4 and 5 polyads have been identified unambiguously. The state discovered by Scherer et al. [J. Chem. Phys. 85, 6315 (1986)], which appears to interact with the K=1 levels of the 3(3) vibrational state at low J, is identified as the second highest of the five K=1 members of the v(4)+v(6)=4 polyad. After allowing for the Darling-Dennison resonance, the zero-order bending structure can be represented by omega(4)=764.71, omega(6)=772.50, x(44)=0.19, x(66)=-4.23, and x(46)=11.39 cm(-1). The parameters x(46) and K(4466) are both sums of contributions from the vibrational angular momentum and from the anharmonic force field. For x(46) these contributions are 14.12 and -2.73 cm(-1), respectively, while the corresponding values for K(4466) are -28.24 and -23.44 cm(-1). It is remarkable how severely the coupling of nu(4) and nu(6) distorts the overtone polyads, and also how in this case the effects of vibrational angular momentum outweigh those of anharmonicity in causing the distortion.  相似文献   

13.
The high-resolution far-infrared absorption spectrum of the gaseous molecular complex H(3)N-HCN is recorded by means of static gas-phase Fourier transform far-infrared spectroscopy at 247 K, using a synchrotron radiation source. The spectrum contains distinct rotational structures which are assigned to the intermolecular NH(3) libration band nu9(1) (nu(B)) of the pyramidal H(3)N-HCN complex. A rovibrational analysis based on a standard semirigid symmetric top molecule model yields the band origin of 260.03(10) cm(-1), together with values for the upper state rotational constant B' and the upper state quartic centrifugal distortion constants D'(J) and D'(JK). The values for the upper state spectroscopic constants indicate that the hydrogen bond in the H(3)N-HCN complex is destabilized by 5% and elongates by 0.010 A upon excitation of a quantum of libration of the hydrogen bond acceptor molecule.  相似文献   

14.
IR+UV double resonant ion-dip and ion-enhancement spectroscopies are employed to study the nu3 asymmetric CH stretch vibration fundamental of CH3 in the ground and 3p(z) Rydberg electronic states. CH3 radical is synthesized in the supersonic jet expansion by flash pyrolysis of azomethane (CH3NNCH3) prior to the expansion. The Q band of the 3(1) (1) 3p(z)<--X transition of CH3, not detected by conventional UV resonantly enhanced multiphoton ionization (REMPI) spectroscopy, is determined to lie at 59,898 cm(-1) using IR+UV REMPI spectroscopy. Energy of the asymmetric CH stretch of CH3 in the 3p(z) Rydberg state, nu3(3p(z)), is 3087 cm(-1), redshifted by approximately 74 cm(-1) with respect to ground state nu3(X).  相似文献   

15.
Resonance Raman spectra were obtained for 2-nitrophenol in cyclohexane solution with excitation wavelengths in resonance with the charge-transfer (CT) proton transfer band absorption. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion along more than 15 normal modes: the nominal CCH bend+CC stretch nu(12) (1326 cm(-1)), the nominal CCC bend nu(23) (564 cm(-1)), the nominal CO stretch+NO stretch+CC stretch nu(14) (1250 cm(-1)), the nominal CCH bend+CC stretch+COH bend nu(15) (1190 cm(-1)); the nominal CCH bend+CC stretch nu(17) (1134 cm(-1)), the nominal CCC bend+CC stretch nu(22) (669 cm(-1)), the nominal CCN bend nu(27) (290 cm(-1)), the nominal NO(2) bend+CC stretch nu(21) (820 cm(-1)), the nominal CCO bend+CNO bend nu(25) (428 cm(-1)), the nominal CC stretch nu(7) (1590 cm(-1)), the nominal NO stretch nu(8) (1538 cm(-1)), the nominal CCC bend+NO(2) bend nu(20) (870 cm(-1)), the nominal CC stretch nu(6) (1617 cm(-1)), the nominal COH bend+CC stretch nu(11) (1382 cm(-1)), nominal CCH bend+CC stretch nu(9) (1472 cm(-1)). A preliminary resonance Raman intensity analysis was done and the results for 2-nitrophenol were compared to previously reported results for nitrobenzene, p-nitroaniline, and 2-hydroxyacetophenone. The authors briefly discuss the differences and similarities in the CT-band absorption excitation of 2-nitrophenol relative to those of nitrobenzene, p-nitroaniline, and 2-hydroxyacetophenone.  相似文献   

16.
Sixteen intermolecular vibrational levels of the S(0) state of the fluorobenzene-Ar van der Waals complex have been observed using dispersed fluorescence. The levels range up to ~130 cm(-1) in vibrational energy. The vibrational energies have been modelled using a complete set of harmonic and quartic anharmonic constants and a cubic anharmonic coupling between the stretch and long axis bend overtone that becomes near ubiquitous at higher energies. The constants predict the observed band positions with a root mean square deviation of 0.04 cm(-1). The set of vibrational levels predicted by the constants, which includes unobserved bands, has been compared with the predictions of ab initio calculations, which include all vibrational levels up to 70-75 cm(-1). There are small differences in energy, particularly above 60 cm(-1), however, the main differences are in the assignments and are largely due to the limitations of assigning the ab initio wavefunctions to a simple stretch, bend, or combination when the states are mixed by the cubic anharmonic coupling. The availability of these experimental data presents an opportunity to extend ab initio calculations to higher vibrational energies to provide an assessment of the accuracy of the calculated potential surface away from the minimum. The intermolecular modes of the fluorobenzene-Ar(2) trimer complex have also been investigated by dispersed fluorescence. The dominant structure is a pair of bands with a ~35 cm(-1) displacement from the origin band. Based on the set of vibrational modes calculated from the fluorobenzene-Ar frequencies, they are assigned to a Fermi resonance between the symmetric stretch and symmetric short axis bend overtone. The analysis of this resonance provides a measurement of the coupling strength between the stretch and short axis bend overtone in the dimer, an interaction that is not directly observed. The coupling matrix elements determined for the fluorobenzene-Ar stretch-long axis bend overtone and stretch-short axis bend overtone couplings are remarkably similar (3.8 cm(-1) cf. 3.2 cm(-1)). Several weak features seen in the fluorobenzene-Ar(2) spectrum have also been assigned.  相似文献   

17.
The torsional spectrum of disilane was recorded for the first time under high-pressure-pathlength conditions and at a spectral resolution of 0.007 cm(-1) using a Bruker IFS-120 HR Fourier transform spectrometer. The spectrum shows six distinct Q branches. The most prominent Q branch is near 130 cm(-1) which is a blend of four components of the torsional fundamental. Of the remaining five, four were assigned to the first torsional hot band (v(4)=2<--1) and one to the second torsional hot band (v(4)=3<--2). Over 350 transitions were identified. An analysis of the torsional fundamental, the first torsional hot band, and the lower state combination differences from frequencies of the vibrational bands nu(9) and nu(9)+nu(4)-nu(4) was made to characterize the torsion-rotation Hamiltonian in the ground vibrational state. The barrier height, barrier shape, and the rotational constant about the Si-Si bond were determined to be 404.344(83) cm(-1), 2.255(65) cm(-1), and 43208(28) MHz, respectively. Comparison of simulated and the experimental spectra yielded (mu||-mu(perpendicular))/mu(perpendicular)= -4(1) for the torsional dipole moments. This ratio compares well with -3.39(6) for ethane. A comparison of molecular parameters obtained here is made with those for methyl silane and ethane.  相似文献   

18.
First high-resolution IR spectra of jet-cooled vinyl radical in the C-H stretch region are reported. Detailed spectral assignments and least squares fits to an A-reduction Watson asymmetric top Hamiltonian yield rotational constants and vibrational origins for three A-type bands, assigned to single quantum excitation of the symmetric CH(2) stretch. Two of the observed bands arise definitively from ground state vinyl radical, as rigorously confirmed by combination differences predicted from previous midinfrared CH(2) wagging studies of Kanamori et al. [J. Chem. Phys. 92, 197 (1990)] as well as millimeter wave rotation-tunneling studies of Tanaka et al. [J. Chem. Phys. 120, 3604 (2004)]. The two bands reflect transitions out of symmetric (0(+)) and antisymmetric (0(-)) tunneling levels of vinyl radical populated at 14 K slit-jet expansion temperatures. The band origins for the lower-lower (0(+)<--0(+)) and upper-upper (0(-)<--0(-)) transitions occur at 2901.8603(7) and 2901.9319(4) cm(-1), respectively, which indicates an increase in the tunneling splitting and therefore a decrease in the effective tunneling barrier upon CH(2) symmetric stretch excitation. The third A-type band with origin at 2897.2264(3) cm(-1) exhibits rotational constants quite close to (but at high-resolution distinguishable from) the vinyl radical ground state, consistent with a CH(2) symmetric stretch hot band built on one or more quanta of excitation in a low frequency vibration. The observed CH(2) symmetric stretch bands are in excellent agreement with anharmonically scaled high level density functional theory (DFT) calculations and redshifted considerably from previous low resolution assignments. Of particular dynamical interest, Boltzmann analysis indicates that the pair of 0(+) and 0(-) tunneling bands exhibits 1:1 nuclear spin statistics for K(a)=even:odd states. This differs from the expected 3:1 ratio for feasible exchange of the two methylenic H atoms but is consistent with a 4:4 ratio predicted for interchange between all three H atoms. This suggests the novel dynamical possibility of large amplitude "roaming" of all three H atoms in vinyl radical, promoted by high internal vibrational excitation arising from dissociative electron attachment in the discharge.  相似文献   

19.
We have measured the infrared (IR) vibrational spectrum for cis-dichloroethene (cis-ClCH[Double Bond]CHCl) in excited Rydberg states with the effective principal quantum numbers n(*)=9, 13, 17, 21, 28, and 55 using the vacuum ultraviolet-IR-photoinduced Rydberg ionization (VUV-IR-PIRI) scheme. Although the IR frequencies observed for the vibrational bands nu(11) (*) (asymmetric C-H stretch) and nu(12) (*) (symmetric C-H stretch) are essentially unchanged for different n(*) states, suggesting that the IR absorption predominantly involves the ion core and that the Rydberg electron behaves as a spectator; the intensity ratio for the nu(11) (*) and nu(12) (*) bands [R(nu(11) (*)nu(12) (*))] is found to decrease smoothly as n(*) is increased. This trend is consistent with the results of a model ab initio quantum calculation of R(nu(11) (*)nu(12) (*)) for excited cis-ClCH[Double Bond]CHCl in n(*)=3-18 states and the MP26-311++G(2df,p) calculations of R(nu(11)nu(12)) and R(nu(11) (+)nu(12) (+)), where R(nu(11)nu(12))[R(nu(11) (+)nu(12) (+))] represents the intensity ratio of the nu(11)(nu(11) (+)) asymmetric C-H stretching to the nu(12)(nu(12) (+)) symmetric C-H stretching vibrational bands for cis-ClCH[Double Bond]CHCl (cis-ClCH[Double Bond]CHCl(+)). We have also measured the IR-VUV-photoion (IR-VUV-PI) and IR-VUV-pulsed field ionization-photoelectron depletion (IR-VUV-PFI-PED) spectra for cis-ClCH[Double Bond]CHCl. These spectra are consistent with ab initio calculations, indicating that the IR absorption cross section for the nu(12) band is negligibly small compared to that for the nu(11) band. While the VUV-IR-PIRI measurements have allowed the determination of nu(11) (+)=3067+/-2 cm(-1), nu(12) (+)=3090+/-2 cm(-1), and R(nu(11) (+)nu(12) (+)) approximately 1.3 for cis-ClCH=CHCl(+), the IR-VUV-PI and IR-VUV-PFI-PED measurements have provided the value nu(11)=3088.5+/-0.2 cm(-1) for cis-ClCH=CHCl.  相似文献   

20.
The vibrations of the propargyl cation (H(3)C(3)H(+)) have been studied by vibrational configuration interaction (VCI) calculations, using explicitly correlated coupled cluster theory at the CCSD(T*)-F12a level to determine the underlying 12-dimensional potential energy surface. The wavenumbers of the fundamental vibrations are predicted with an accuracy of ca. 5 cm(-1). Harmonic wavenumber shifts for three different energy minima of the complex H(2)C(3)H(+)·Ar are combined with the corresponding VCI values in order to provide a comparison with recent infrared photodissociation (IRPD) spectra (A. M. Ricks et al., J. Chem. Phys., 2010, 132, 051101). An excellent agreement between experiment and theory is obtained for bands ν(2) (symm. CH stretch), ν(3) (pseudoantisymm. CC stretch), and ν(4) (CH(2) scissoring). However, reassignments are suggested for the bands observed at 3238 cm(-1), the "doublets" around 3093 and 1111 cm(-1), and the band at 3182 cm(-1). The assignment of the latter to the asymmetric CH stretching vibration of c-C(3)H·Ar is certainly wrong; the combination tone ν(3) + ν(5) of H(2)C(3)H(+)·Ar is a more likely candidate. Furthermore, accurate proton affinities are predicted for the carbenes H(2)C(n) with n = 3-8, thereby providing data of interest for interstellar cloud chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号