首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work presents a way to select the optimal form of the sector lobe and practical algorithms to determine the sector function of the device in use. Knowledge of the sector function enhances the quality of drawing a background line and ensures the division of multiplicative and additive noise components, thus increasing the reliability of structural parameters determined by gas electron diffraction.  相似文献   

2.
The scattering on the residual gas in an electron diffraction chamber is modeled. A comparison with experimental data reveals that is this scattering that may make a major contribution to the extraneous signal inevitably present in the recorded diffraction pattern. Practical recommendations on the development of the electron diffraction apparatus design are given.  相似文献   

3.
The methods of determining and taking into account the nonlinearity of the response characteristics of photographic materials used in gas electron diffraction experiments are considered. A technique is proposed that yields reliable characteristics of the nonlinearity of photographic materials based on the instrumental background of an electron diffraction apparatus measured at multiple exposure times. Experiments are carried out and the response curve of the photo emulsion of KODAK SO-193 used in the electron diffraction laboratory of the Chemistry Department of MSU is determined. The developed technique can be applied to determine the response characteristics of various registering devices.  相似文献   

4.
Electron scattering expressions are presented which are applicable to very general conditions of implementation of anisotropic ultrafast electron diffraction (UED) experiments on the femto- and picosecond time scale. "Magic angle" methods for extracting from the experimental diffraction patterns both the isotropic scalar contribution (population dynamics) and the angular (orientation-dependent) contribution are described. To achieve this result, the molecular scattering intensity is given as an expansion in terms of the moments of the transition-dipole distribution created by the linearly polarized excitation laser pulse. The isotropic component (n=0 moment) depends only on population and scalar internuclear separations, and the higher moments reflect bond angles and evolve in time due to rotational motion of the molecules. This clear analytical separation facilitates assessment of the role of experimental variables in determining the influence of anisotropic orientational distributions of the molecular ensembles on the measured diffraction patterns. Practical procedures to separate the isotropic and anisotropic components of experimental data are evaluated and demonstrated with application to reactions. The influence of vectorial properties (bond angles and rotational dynamics) on the anisotropic component adds a new dimension to UED, arising through the imposition of spatial order on otherwise randomly oriented ensembles.  相似文献   

5.
After a laser gas nitriding treatment of the Ti‐7.5Al (atom %) titanium‐based alloy, we used a combination of electron backscattered diffraction (EBSD) in scanning electron microscope and electron probe microanalysis (EPMA) techniques in order to efficiently characterize the different phases in the resolidified layer. Representative measurements of chemical composition and reliable determination of crystal structure were possible for each phase of the complex microstructure. The reaction zone is formed by a mixture of isostructural TiN phases with dendritic and/or ‘coarse’ needles morphology, fixed into a α′‐Ti matrix (martensite) with a thin needle aspect. The nitrogen solubility was found to remain very low in the α′‐Ti matrix (up to 2–3 atom %), while in the TiN phase, an aluminum solubility as high as 4 atom % was measured, reducing drastically the nitrogen content into a Ti79N17Al4 chemical composition. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The saturated vapor over LaI3 has been studied using the electron diffraction method with mass-spectral monitoring. It was determined that at a temperature 1142(10) K, along with monomer molecules, dimers are present in the vapor in the quantity of 0.7 mol.%. Effective configuration parameters of LaI3 molecule were obtained: r g(La-I) 2.961(6) Å, ∠g(I-La-I) 116.5(9)°, l(La-I) 0.106(1) Å and l(I…I) 0.412(7) Å. A small deviation of the valence angle ∠g(I-L-I) from 120° can be totally caused by a contraction effect of the distance r g(I…I) of LaI3 molecule with planar equilibrium configuration. The electronic structure of LaI3 molecule was examined by the B3LYP/SDD method. In terms of the NBO-analysis, the participation of lanthanum 4f-AO in bonding orbitals La-I is noted. It is shown that the NBO-analysis describes the bond La-I in LaI3 molecule as predominantly ionic one with a noticeable covalence component. The energy of the heterolytic bond breakage E(La-I)het = 1216 kJ/mole was calculated.  相似文献   

7.
In elastic peak electron spectroscopy (EPES), the nearest vicinity of elastic peak in the low kinetic energy region reflects electron inelastic and quasielastic processes. Incident electrons produce surface excitations, inducing surface plasmons, with the corresponding loss peaks separated by 1–20 eV energy from the elastic peak. In this work, X‐ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for determining surface atomic composition and bulk density, whereas atomic force microscopy (AFM) is applied for determining surface morphology and roughness. The component due to electron recoil on hydrogen atoms can be observed in EPES spectra for selected primary electron energies. Simulations of EPES predict a larger contribution of the hydrogen component than observed experimentally, where hydrogen deficiency is observed. Elastic peak intensity is influenced more strongly by surface morphology (roughness and porosity) than by surface excitations and quasielastic scattering of electrons by hydrogen atoms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The technique of ultrafast electron diffraction allows direct measurement of changes which occur in the molecular structures of isolated molecules upon excitation by femtosecond laser pulses. The vectorial nature of the molecule-radiation interaction also ensures that the orientation of the transient populations created by the laser excitation is not isotropic. Here, we examine the influence on electron diffraction measurements--on the femtosecond and picosecond timescales--of this induced initial anisotropy and subsequent inertial (collision-free) molecular reorientation, accounting for the geometry and dynamics of a laser-induced reaction (dissociation). The orientations of both the residual ground-state population and the excited- or product-state populations evolve in time, with different characteristic rotational dephasing and recurrence times due to differing moments of inertia. This purely orientational evolution imposes a corresponding evolution on the electron scattering pattern, which we show may be similar to evolution due to intrinsic structural changes in the molecule, and thus potentially subject to misinterpretation. The contribution of each internuclear separation is shown to depend on its orientation in the molecular frame relative to the transition dipole for the photoexcitation; thus not only bond lengths, but also bond angles leave a characteristic imprint on the diffraction. Of particular note is the fact that the influence of anisotropy persists at all times, producing distinct differences between the asymptotic "static" diffraction image and the predictions of isotropic diffraction theory.  相似文献   

9.
《Mendeleev Communications》2022,32(4):474-477
The molecular structure and conformational composition of 6-cyclopropyl-1,5-diazabicyclo[3.1.0]hexane were determined by gas phase electron diffraction and quantum chemical calculations. The gas phase electron diffraction data were well reproduced for the mixture of two conformers with anti-boat and gauche-boat mutual ring orientation having 15 and 85% relative abundance, respectively. The standard enthalpy of formation of substance under study was calculated using atomization reactions, yielding value of 307.9 ± 3.3 kJ mol-1 in gas phase.  相似文献   

10.
The experimental intensity of 30 keV electron small angle scattering by a gaseous molecule is much different from the calculation using usual independent atom model. This is due to the rearrangement of electron distribution in a molecule by the formation of chemical bonds, and is called chemical bonding effect (CBE). The molecules studied are mainly hydrocarbons such as methane, acetylene, ethane, etc. and some non-hydrocarbons. The measurement was carried out on both elastic and total scattering and the effect was found for not only elastic but also inelastic scattering. The effect is relatively large for hydrogen rich molecules as H2O, NH3 and hydrocarbons, but is essentially related to the number of atoms contained in molecules. The origin of CBE will attribute mainly to the concentration of inner atomic electrons resulting from chemical bonding.  相似文献   

11.
An evaluation is presented of some recently published partial wave electron scattering factors for neutral atoms which are frequently used in structural studies by gas electron diffraction. Significant corrections are given for 3 of the 75 elements which were treated.  相似文献   

12.
《Mendeleev Communications》2023,33(4):515-518
For the first time, the equilibrium molecular structure and conformational composition (6 to 8 conformers) of 1,2,3-triethyl-diaziridine in the gas phase were determined by gas-phase electron diffraction. Using 1D and 2D 1H and 13C NMR spectro-scopy, it was shown that in a CDCl3 solution under normal conditions on the NMR time scale, the molecule exists only as one conformer. The enthalpy of formation ΔfH 0298 of the studied molecule in the gas phase was calculated by the method of atomization reactions and is equal to 92.2 ± 1.7 kJ mol−1.  相似文献   

13.
Tilinin  I. S.  Werner  W. S. M. 《Mikrochimica acta》1994,114(1):485-503
The study of fast electron interaction with solids in the energy range from 100 eV to several tens of keV is prompted by quickly developing microbeam analysis techniques such as electron probe microanalysis, scanning electron microscopy, electron energy loss spectroscopy and so on. It turned out that for random solids the electron transport problem might be solved on the basis of the generalized radiative field similarity principle. The latter states that the exact differential elastic cross section in the kinetic equation may be replaced by an approximate one provided the conditions of radiative field similarity are fulfilled. Application of the generalized similarity principle to electron scattering in solids has revealed many interesting features of electron transport. Easy to use and effective formulae have been obtained for the angular and energy distribution of electrons leaving a target, total yields of characteristic photons and slow electrons escaping from a sample bombarded by fast primaries, escape probability of Auger electrons as a function of depth etc. The analytical results have been compared with Monte Carlo calculations and experiments in a broad range of electron energies and scattering properties of solids and good agreement has been observed.  相似文献   

14.
The main structural parameters of the triallylborane molecule having the C 3 symmetry were determined by gas electron diffraction and quantum-chemical calculations at the MP2/6-31G(d,p) and B3LYP/6-31G(d,p) levels. The parameters calculated by the MP2/6-31G(d,p) method are in better agreement with the experimental data than those calculated by the B3LYP/6-31G(d,p) method.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 98–101, January, 2005.  相似文献   

15.
The molecular structure and conformation of carvone, a compound with a minty odor, were investigated by means of gas electron diffraction supported by theoretical calculations. Electron diffraction patterns were recorded by heating the nozzle up to 128 °C to obtain enough scattering intensity. The infrared spectrum was also measured by using an absorption cell with a path length of 10 m. The obtained molecular scattering intensities were analyzed with the aid of theoretical calculations and infrared spectroscopy. It was revealed that the experimental data are well reproduced by assuming that carvone consists of a mixture of three conformers that have the isopropenyl group in the equatorial position and mutually differ in the torsional angle around the single bond connecting the ring and the isopropenyl group. It was also found that the puckering amplitude of the ring of carvone is close to those of menthol and isomenthol, a minty compound and its nonminty isomer. The determined structural parameters (rg and ∠α) of the most abundant conformer of carvone are as follows: 〈r(C-C)〉=1.520(3) Å; 〈r(CC)〉=1.360(5) Å; r(CO)=1.225(5) Å; 〈r(C-H)〉=1.104(4)Å; 〈∠CC-C〉=121.1(5)°; 〈∠C-C-C〉=110.4(5)°; ∠C-CO-C=117.1(14)°; 〈∠C-C-H〉=111.1(13)°. Angle brackets denote average values and parenthesized values are the estimated limits of error (3σ) referring to the last significant digit.  相似文献   

16.
A polyphosphide of the type (NaP)X 1 was obtained from red phosphorus and sodium in presence of small amounts of naphthalene in 1,2-dimethoxyethane as solvent. 1 reacts with alkyl halides in dependence on the kind of alkyl group with formation of different alkylcyclophosphanes. As definite compounds Me5P5 2 , Et5P5 3 (with not definite constitution), i-Pr4P4 4 and t-Bu4P4 5 could be isolated. 1 was identified by X-ray diffraction, 2 – 5 by means of their 1H, 13C, 31P n.m.r. and mass spectra. The molecular structure of 4 was identified by electron diffraction.  相似文献   

17.
The molecular structure and benzene ring distortions of ethynylbenzene have been investigated by gas-phase electron diffraction and ab initio MO calculations at the HF/6-31G* and 6-3G** levels. Least-squares refinement of a model withC 2v, symmetry, with constraints from the MO calculations, yielded the following important bond distances and angles:r g(C i -C o )=1.407±0.003 Å,r g(C o -C m )=1.397±0.003 Å,r g(C m -C p )=1.400±0.003 Å,r g(Cr i -CCH)=1.436 ±0.004 Å,r g(C=C)=1.205±0.005 Å, C o -C i -C o =119.8±0.4°. The deformation of the benzene ring of ethynylbenzene given by the MO calculations, including o-Ci-Co=119.4°, is insensitive to the basis set used and agrees with that obtained by low-temperature X-ray crystallography for the phenylethynyl fragment, C6H5-CC-, in two different crystal environments. The partial substitution structure of ethynylbenzene from microwave spectroscopy is shown to be inaccurate in the ipso region of the benzene ring.  相似文献   

18.
The inverse Compton scattering between positron bunches and the free electron laser (FEL) of the Super-ACO storage ring generates a collimated and tunable gamma-ray beam. The use of the FEL instead of an external conventional laser, automatically provides the transverse alignment and synchronisation of the electron and optical beams. The Super-ACO FEL is operated in the 300–430 nm range at 800 MeV with a high repetition rate (8 MHz) and an average transmitted power of 300 mW at 350 nm. High energy gamma-rays of 35 MeV are produced with a rate of 1.5×107 photons/s and good monochromaticity (about 10%).  相似文献   

19.
The results of an electron diffraction reanalysis, augmented with a combined electron diffraction and vibrational spectroscopic elucidation, of the molecular structure of BiCl3 are reported. The principal parameters arer g (Bi-Cl)=2.424±0.005 å (r =2.417±0.005 å) and <Cl-Bi-Cl=97.5±0.2. They are in excellent agreement with previous electron diffraction analysis [1], utilizing a more limited data range from the same experiment. They are also fully consistent with the expected trends of geometrical variation in the Group V trihalide series. The force fields of BiCl3, determined by normal coordinate analysis and by combined analysis, agree within experimental error.  相似文献   

20.
The formation of Fe–Zn intermetallic compounds, as relevant in the commercial product galvannealed steel sheet, was investigated by scanning electron microscopy and different methods of X-ray diffraction. A scanning electron microscope with high resolution was applied to investigate the layers of the galvannealed coating and its topography. Grazing incidence X-ray diffraction (GID) was preferred over conventional Bragg–Brentano geometry for analysing thin crystalline layers because of its lower incidence angle α and its lower depth of information. Furthermore, in situ experiments at an environmental scanning electron microscope (ESEM) with an internal heating plate and at an X-ray diffractometer equipped with a high-temperature chamber were carried out. Thus, it was possible to investigate the phase evolution during heat treatment by X-ray diffraction and to display the growth of the ζ crystals in the ESEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号