首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Starch preparations were added to agarose gels to enhance the electrophoretic trapping of circular plasmid DNA. The critical voltages required to trap the open circular (OC) and the supercoiled (SC) forms of a 13.1-kbp plasmid were measured in gels composed of agarose and added starch preparations. Modified starch preparations reduced the critical voltage required to trap the OC form of the plasmid to approximately one-third of the control value (in 1% agarose gels). Amylose (a fraction of starch with a low amount of branching) also reduced the critical voltage to trap the OC form in a similar manner. The critical voltage to trap the SC form of the plasmid was not significantly reduced by the starch preparations. The capacity to trap OC DNA was increased by the addition of higher amounts of the starch preparations added to the gels. Field inversion gel electrophoresis was used to characterize the length of the traps in the gels. The starch preparations and amylose increased the trap lengths approximately twofold. The increased trap length correlated with the decreased critical voltage required to trap the OC form of the 13.1-kbp plasmid. Certain commercial equipment, instruments, or materials are identified in this article to specify adequately the experimental procedures. Such identification does not imply recommendation by National Institute of Standards and Technology, nor does it imply that the materials or equipment are necessarily the best available for the purpose.  相似文献   

2.
The electric field dependence of the electrophoretic mobility of linear DNA fragments in agarose gels was reinvestigated in order to correct the observed mobilities for the different temperatures actually present in the gel during electrophoresis in different electric field gradients. When corrected to a common temperature, the electrophoretic mobilities of DNA fragments less than or equal to 1 kilobase pairs (kbp) in size were independent of electric field strength at all field strengths from 0.6 to 4.6 V/cm if the gels contained less than or equal to 1.4% agarose. The mobilities of larger DNA fragments increased approximately linearly with electric field strength. If the agarose concentration was higher than 2%, the mobilities of all DNA fragments increased with increasing electric field strength. The electric field dependence of the mobility was larger in gels cast and run in Tris-borate buffer (TBE) than in gels cast and run in Tris-acetate buffer (TAE), and was more pronounced in gels without ethidium bromide incorporated in the matrix. Ferguson plots were constructed for the various DNA fragments, both with and without extrapolating the temperature-corrected mobilities to zero electric field strength. Linear Ferguson plots were obtained for all fragments less than or equal to 12 kbp in size in agarose gels less than or equal to 1.4% in concentration if the mobilities were first extrapolated to zero electric field strength. Concave upward curvature of the Ferguson plots was observed for DNA fragments greater than or equal to 2 kbp in size at finite electric field strengths. Convex downward curvature of the Ferguson plots was observed for DNA fragments greater than or equal to 1 kbp in size in agarose gels greater than or equal to 2% in concentration. The mobilities of the various DNA fragments, extrapolated to zero agarose concentration and zero electric field strength, decreased with increasing DNA molecular weight; extrapolating to zero molecular weight gave an "intrinsic" DNA mobility of 2.7 x 10(-4) cm2/Vs at 20 degrees C. The pore sizes of LE agarose gels cast and run in TAE and TBE buffers were estimated from the mobility of the DNA fragments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Transient electric birefringence has been used as an analytical tool to study the orientation of DNA in agarose gels, and to study the orientation of the matrix alone. The sign of the birefringence of DNA oriented in an agarose gel is negative, as observed in free solution, indicating that the DNA molecules orient parallel to the direction of the electric field. If the median pore diameter of the gel is larger than the contour length of the DNA molecule, the DNA effectively does not see the matrix and the birefringence relaxation time is the same as observed in free solution. However, if the median pore diameter of the gel is smaller than the contour length of the DNA, the DNA molecule becomes stretched as well as oriented. For DNA molecules of moderate size (less than or equal to 4 kb), stretching in the gel causes the birefringence relaxation times to increase to the values expected for fully stretched molecules. Complete stretching is not observed for larger DNA molecules. The orientation and stretching of DNA molecules in the gel matrix indicates that end-on migration, or reptation, is a likely mechanism for DNA electrophoresis in agarose gels. When the electric field is rapidly reversed in polarity, very little change in the orientation of the DNA is observed if the DNA molecules were completely stretched and had reached their equilibrium orientation before the field was reversed in direction. Hence completely stretched, oriented DNA molecules are able to reverse their direction of migration in the electric field with little or no loss of orientation. However, if the DNA molecules were not completely stretched or if the equilibrium orientation had not been reached, substantial disorientation of the DNA molecules is observed at field reversal. The forced rate of disorientation in the reversing field is faster than the field-free rate of disorientation. Complicated patterns of reorientation can be observed after field reversal, depending on the degree of orientation in the original field direction. The effect of pulsed electric fields on the orientation of the agarose gel matrix itself was also investigated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Akerman B  Cole KD 《Electrophoresis》2002,23(16):2549-2561
Results on electrophoretic capture of circular DNA in porous gels are reviewed. Processes which cause arrest of circular forms of DNA during electrophoresis can provide very efficient separation mechanism for the purification of plasmids and bacterial artificial chromosomes if the corresponding linear form is not trapped and therefore removed by the electric field. Two types of such topological traps have been proposed, impalement and lobster traps, and we here review the present experimental support for the existence of these two circle-specific mechanisms. Experiments designed to characterize the traps are discussed, regarding the concentration of the traps as well as their efficiency and capacity to trap both relaxed and supercoiled circular DNA. Studies of the dynamics of the capture process show that the average capture time is on the order of 10 s at 20 V/cm, by which time the circles have migrated several hundred micrometers and have passed hundreds of traps. We also review results on attempts to improve the capacity and efficiency of the trapping process by modification of the gels either by enzymatic treatment or by cogelation of neutral polymers.  相似文献   

5.
In this work, microfluidic chips were used to study the electrophoresis of supercoiled DNA (SC DNA) in agarose. This system allowed us to study the electrophoretic and trapping behaviours of SC DNA of various lengths, at various fields and separation distances. Near a critical electric field the DNA is trapped such that the concentration falls exponentially with distance. The trapping of such circular DNA has been explained in terms of the 'lobster trap' or 'impalement' model where shorter fibres become trapping sites at higher fields, leading to an ongoing (and gradual) increase in trapping with increasing field. By contrast, the present study suggests that under some circumstances the traps have a barrier such that only when the DNA has sufficient energy (at high enough fields) can it become trapped, leading to a sudden transition in behaviours at the critical field. We propose an 'activated impalement' mechanism of trapping in which only at sufficiently high fields is the SC DNA impaled and trapped for long times. The critical electric field appears to be inversely proportional to the length of the DNA molecule, suggesting that the force required to impale the SC DNA is constant.  相似文献   

6.
Using an original protocol with a rotating gel electrophoresis apparatus, it is shown that duplex DNA undergoing crossed-field electrophoresis in agarose gets trapped in the gel when the field is increased above a threshold value which decreases with the chain length and depends on the angle between the fields in a non-monotonous manner. This trapping is irreversible, i.e. once trapped at a high field strength, chains are unable to resume their motion when the field is returned to a lower value at which they moved prior to trapping. A model of trapping by "tight knots" is proposed. It predicts a trapping threshold proportional to the inverse square of the electric field, in qualitative agreement with the data. The implications of our results for the separation of large DNA molecules are discussed.  相似文献   

7.
In this paper the use of voltage gradient gel electrophoresis (VGGE) in the electrophoretic analysis of apoptotic DNAs is described. The peculiarity of VGGE fractionation in enhancing DNA bands in the gel by reducing their thickness was used to obtain a rapid, more selective and higher-quality electrophoretic fractionation of apoptotic DNA with respect to conventional electrophoresis. The use of VGGE fractionations also allowed a reduced amount of DNA to be used to detect a characteristic apoptotic DNA ladder pattern, in a lower agarose gel concentration, with respect to conventional electrophoretic fractionation  相似文献   

8.
Single-molecule immunoassay and DNA diagnosis   总被引:1,自引:0,他引:1  
Many assays relevant to disease diagnosis are based on electrophoresis, where the migration velocity is used for distinguishing molecules of different size or charge. However, standard gel electrophoresis is not only slow but also insensitive. We describe a single-molecule imaging procedure to measure the electrophoretic mobilities of up to 100000 distinct molecules every second. The results correlate well with capillary electrophoresis (CE) experiments and afford confident discrimination between normal (16.5 kbp) and abnormal (6.1 kbp) mitochondrial DNA fragments, or beta-phycoerythrin-labeled digoxigenin (BP-D) and its immunocomplex (anti-D-BP-D). This demonstrates that virtually all electrophoresis diagnostic protocols from slab gels to CE should be adaptable to single-molecule detection. This opens up the prossibility of screening single copies of DNA or proteins within single biological cells for disease markers without performing polymerase chain reaction (PCR) or other biological amplification.  相似文献   

9.
We use agarose gel electrophoresis to characterize how the monovalent catioinic surfactant cetyltrimethylammonium bromide (CTAB) compacts double-stranded DNA, which is detected as a reduction in electrophoretic DNA velocity. The velocity reaches a plateau at a ratio R = 1.8 of CTAB to DNA-phosphate charges, i.e., above the neutralization point, and the complexes retain a net negative charge at least up to R = 200. Condensation experiments on a mixture of two DNA sizes show that the complexes formed contain only one condensed DNA molecule each. These CTAB-DNA globules were further characterized by time-resolved measurements of their velocity inside the gel, which showed that CTAB does not dissociate during the migration but possibly upon entry into the gel. Using the Ogston-model for electrophoresis of spherical particles, the measured in-gel velocity of the globule is quantitatively consistent with CTAB having two opposite effects, reduction of both the electrophoretic charge and DNA coil size. In the case of CTAB the two effects nearly cancel, which can explain why opposite velocity shifts (globule faster than uncomplexed DNA) have been observed with some catioinic condensation agents. Dissociation of the complexes by addition of anionic surfactants was also studied. The DNA release from the globule was complete at a mixing ratio between anionic and cationic surfactants equal to 1, in agreement with equilibrium studies. Circular DNA retained its supercoiling, and this demonstrates a lack of DNA nicking in the compaction-release cycle which is important in DNA transfection and purification applications.  相似文献   

10.
DNA electrophoretic mobilities are highly dependent on the nature of the matrix in which the separation takes place. This review describes the effect of the matrix on DNA separations in agarose gels, polyacrylamide gels and solutions containing entangled linear polymers, correlating the electrophoretic mobilities with information obtained from other types of studies. DNA mobilities in various sieving media are determined by the interplay of three factors: the relative size of the DNA molecule with respect to the effective pore size of the matrix, the effect of the electric field on the matrix, and specific interactions of DNA with the matrix during electrophoresis.  相似文献   

11.
A novel, rapid and efficient separation method is described for the analysis of double stranded (ds) DNA fragments in the form of horizontal ultra-thin-layer agarose gel electrophoresis. This separation technique combines the multilane, high-throughput separation format of agarose slab gel electrophoresis with the excellent performance of capillary electrophoresis. The electrophoretic separation of the fluorophore (Cy5)-labeled dsDNA molecules were imaged in real time by a scanning laser-induced fluorescence/avalanche photodiode detection system. Effects of the gel concentration (Ferguson plot) and separation temperature (Arrhenius plot) on the migration characteristics of the DNA fragments are discussed. An important genotyping application is also shown by characterizing the polymorphic region (2× or 4×48 base pair repeats) of the dopamine D4 receptor gene (D4DR, exon III region) for ten individuals, using PCR technology with Cy5-labeled primers and ultra-thin-layer agarose gel electrophoresis.  相似文献   

12.
Heuer DM  Saha S  Archer LA 《Electrophoresis》2003,24(19-20):3314-3322
We have developed a procedure for synthesizing large stable branched DNA structures that enables visualization via fluorescence microscopy. Using this procedure we have synthesized large DNA stars and observed their electrophoretic behavior in polymer solutions and gels. In dilute polyacrylamide solutions, the DNA stars move as random coils and appear to experience only brief collisions with the polymer chains in solution. The effect of polymer solution concentration on the electrophoretic mobility of stars in the dilute regime is found to be in good accord with predictions of the transient entanglement coupling (TEC) model. In semidilute polymer solutions, the star arms extend in the field direction and drag the core through the matrix. The star arms form several U-shaped conformations as they collide and engage with polyacrylamide chains. The U-shaped conformations occasionally evolve into J-shaped conformations as the star arms slide off the matrix chains they engage during electrophoretic migration. In concentrated polymer solutions, the arms of the star extend and form V-shaped structures with the core as the apex. The arms then pull the core through the matrix. These V-shaped conformations are much longer-lived than U-shaped ones and, unlike the latter, do not transform to J-shaped conformations. In polyacrylamide and agarose gels, where matrix entanglements are fixed, DNA stars become trapped when entanglements with matrix molecules prevent the core from being pulled through the matrix by the extended arms. This trapping was observed at all gel concentrations and electric fields studied.  相似文献   

13.
某些过渡金属配合物具有特异性催化DNA和RNA断裂的功能, 因而研究过渡金属配合物对DNA和RNA的断链反应对新型抗肿瘤、抗艾滋病化学药物的定向设计及其基因治疗和分子生物学中DNA和RNA的高度专一性定点断裂、 DNA定位诱变和构象识别具有重要意义和应用前景[1,2]. 我们对二茂钛多酸有机金属衍生物合成及抗肿瘤活性研究表明, 环戊二烯钛多氧金属酸盐衍生物具有很高的抗肿瘤活性和较好的水溶性及稳定性, 有潜在的抗肿瘤药用价值[3].  相似文献   

14.
P Serwer 《Electrophoresis》1989,10(5-6):327-331
Agarose gel electrophoresis is used to fractionate linear, double-stranded DNA by its length. Sieving of the gel is the cause of this fractionation and has been investigated by developing theoretical models and by quantifying sieving observed during electrophoresis. Here are reviewed the following aspects of the fractionation of linear, double-stranded DNA by agarose gel electrophoresis: (1) the basic observations that qualitatively characterize these fractionations, (2) evidence for the deformation of DNA's random coil, (3) quantitative analysis of the relationship of observed electrophoretic mobility to the DNA's length, (4) theoretical models that have been developed to explain data presented in Sections 1-3, (5) observations not yet quantitatively explained by models, and (6) some aspects of the use of a variable electrical field (pulsed-field gel electrophoresis) to improve separations.  相似文献   

15.
The effect of adding linear polymers to a novel reversible electrophoretic was measured. Reversible gels are formed using the polyanionic carbohydrate polymer, gellan gum. Gellan gum forms strong stable gels in the presence of divalent cations or diamines. The gels are reversible (return to solution) by changing the ionic environment or pH. Gellan gum is an anionic polymer, and the electrophoresis gels have considerable electroosmotic flow (EOF) toward the negative electrode. We measured the EOF in gellan gum electrophoresis gels as a function of gel concentration, buffer composition, and linear polymer additive. The linear polymers used in this study were polyethylene oxide and hydroxyethyl cellulose. Both polymers reduced EOF in the gels, in a manner dependent on molecular weight. Polymers with high molecular weight were more effective at reducing EOF. The addition of polymers increased the resolution of low molecular weight DNA. Native gellan gum resolved DNA from approx 50,000 to 1000 bp. Addition of the polymers resolved DNA down to approx 50 bp, in some instances. The influence of the polymers on circular plasmid DNA was also investigated. Addition of high molecular weight polyethylene oxide reduced the electrophoretic mobility of the nicked circular form compared to the supercoiled form.  相似文献   

16.
Reversible noncovalent but sequence‐dependent attachment of DNA to gels is shown to allow programmable mobility processing of DNA populations. The covalent attachment of DNA oligomers to polyacrylamide gels using acrydite‐modified oligonucleotides has enabled sequence‐specific mobility assays for DNA in gel electrophoresis: sequences binding to the immobilized DNA are delayed in their migration. Such a system has been used for example to construct complex DNA filters facilitating DNA computations. However, these gels are formed irreversibly and the choice of immobilized sequences is made once off during fabrication. In this work, we demonstrate the reversible self‐assembly of gels combined with amphiphilic DNA molecules, which exhibit hydrophobic hydrocarbon chains attached to the nucleobase. This amphiphilic DNA, which we term lipid‐DNA, is synthesized in advance and is blended into a block copolymer gel to induce sequence‐dependent DNA retention during electrophoresis. Furthermore, we demonstrate and characterize the programmable mobility shift of matching DNA in such reversible gels both in thin films and microchannels using microelectrode arrays. Such sequence selective separation may be employed to select nucleic acid sequences of similar length from a mixture via local electronics, a basic functionality that can be employed in novel electronic chemical cell designs and other DNA information‐processing systems.  相似文献   

17.
Researchers in molecular biology spend a significant amount of time tending to the staining and destaining of electrophoresis gels. Here we describe a simple system, costing approximately $100 and taking approximately 1 h to assemble, that automates standard nucleic acid and protein gel staining protocols. Staining is done in a tray or, with DNA gels, in the electrophoresis chamber itself following automatic detection of the voltage drop. Miniature pumps controlled by a microcontroller chip exchange the necessary solutions at programmed time intervals. We demonstrate efficient and highly reproducible ethidium bromide and methylene blue staining of DNA in agarose gels and Coomassie blue and silver staining of proteins in polyacrylamide gels.  相似文献   

18.
Intercalative binding of ligands to DNA can be demonstrated by helix unwinding, monitored by gel electrophoresis of supercoiled DNA, as electrophoretic mobility is sensitive to the topological DNA state. However, we show that an apparent lack of unwinding in an electrophoretic assay could be due to dissociation of the (intercalated) ligand during the analysis, rather than evidence for a nonintercalative mode of binding to DNA. Repetitive scanning during the electrophoresis ensures that release of the ligand during electrophoresis does not affect the measured degree of unwinding, based on the electrophoretic velocity being determined as a function of time. We use this assay to establish intercalation as a mode of binding to DNA for the cyanine dyes YO, YO-PRO as well as two enantiomeric forms of the ruthenium complexes [(phen)2 Ru(tatpp)Ru(phen)2]4+, and to support groove-binding for the new unsymmetrical cyanine dyes BOXTO and BOXTO-PRO. Groove-binding could be concluded from a lack of unwinding, because we could rule out that it is caused by release of the dye during the electrophoresis. The gel electrophoresis has the advantage over hydrodynamic techniques that much smaller sample amounts are required, and our time-resolved approach can be employed in all mobility-shift assays when applied to dissociating complexes.  相似文献   

19.
We use Brownian dynamics simulations to analyze the electrophoretic separation of λ-DNA (48.5 kbp) and T4-DNA (169 kbp) in a hexagonal array of 1 μm diameter posts with a 3 μm center-to-center distance. The simulation method takes advantage of an efficient interpolation algorithm for the non-uniform electric field to reach an ensemble size (100 molecules) and simulation length scale (1 mm) that produces meaningful results for the average electrophoretic mobility and effective diffusion (dispersion) coefficient of these macromolecules as they move through the array. While the simulated electrophoretic mobility for λ-DNA is close to the experimental data, the simulation underestimates the magnitude of the corresponding dispersion coefficient. The simulations predict baseline resolution in a 15 mm device after 7 min using an electric field around 30 V/cm, with the resolution increasing exponentially as the electric field further decreases. The mobility and dispersivity data point out two essential phenomena that have been overlooked in previous models of DNA electrophoresis in post arrays: the relaxation time between collisions and simultaneous collisions with multiple posts.  相似文献   

20.
Z Buzás  Z Boldogkoi 《Electrophoresis》1999,20(14):2838-2840
It has been known since 1990 that DNA curvature can be recognized on transverse pore gradient gels by an intersection of "Ferguson curves" with those of DNA size standards. The miniaturized PhastSystem polyacrylamide gels allow one to detect DNA curvature effortlessly and fast and at great economy of sample relative to alternative methods of electrophoresis. Using the transverse gradient gel electrophoresis method, it was found that the 660 bp length subfragment of the matrix attachment region (MAR) sequence of the chicken lysosyme gene migrates as a fragment of 800-900 bp length. When subjected to digestion with the restriction enzyme HaeIII, the fragment gives rise to two species of 248 and 412 bp length, respectively. The Ferguson curves of both species intersect with those of DNA size standards, indicating that both exhibit curvature. Only the curvature of the 412 bp fragment conforms to prediction. Ethidium bromide abolishes the effect of curvature on the fragment, reducing its apparent size from 900 to 660, the value obtained by agarose gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号