首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionic liquids (ILs)-bonded silica adsorbents were prepared by chemical modification of the silica surface using N-alkylimidazolium-based ILs with Cl?, BF4 ?, PF6 ? or NO3 ? anion, and applied to selective separation of the model mixture of luteolin and aloe-emodin. Among the investigated ILs-bonded silica materials, the silica grafted with N-octyllimidazolium hexafluorophosphate ([C8mim]PF6@SiO2) exhibited higher adsorption capacity and selectivity of luteolin from the model mixed solution of luteolin and aloe-emodin. The isotherm data of luteolin on [C8mim]PF6@SiO2 correlated better to the Freundlich model than the Langmuir model, and the calculated thermodynamic parameters indicated that the adsorption of luteolin was spontaneous and exothermic. The dynamic adsorption and elution experiments demonstrated that the high adsorption capacity and good desorption efficiency of luteolin on fixed bed packed with the [C8mim]PF6@SiO2. Moreover, the results from batch adsorption and dynamic adsorption showed well selective separation towards the model mixture of luteolin and aloe-emodin.  相似文献   

2.
Density functional theory (DFT) calculations have been performed to investigate the interfacial interactions of ionic liquids (ILs) on the α- and β-phases of phosphorene (P) and arsenene (As). Nine representative ILs based on the combinations of 1-ethyl-3-methylimidazolium ([EMIM]+), N-methylpyridinium ([MPI]+), and trimethylamine ([TMA]+) cations paired to tetrafluoroborate ([BF4]), trifluoromethanesulfonate ([TFO]), and chloridion (Cl) anions were used as adsorbates on the 2D P and As nanosheets with different phases to explore the effect of IL adsorption on the electronic and optical properties of 2D materials. The calculated structure, adsorption energy, and charge transfer suggest that the interaction between ILs and P and As nanosheets is dominated by noncovalent forces, and the most stable adsorption structures are characterized by the simultaneous interaction of the cation and anion with the surface, irrespective of the types of ILs and surfaces. Furthermore, the IL adsorption leads to the larger change in the electronic properties of β-phase P and As than those of their α-phase counterparts, which demonstrates that the adsorption properties are not only related to the chemical elements, but also closely related to the phase structures. The present results provide insight into the further applications of ILs and phosphorene (arsenene) hybrid materials.  相似文献   

3.
Geminal dicationic ionic liquids (ILs), a new category of IL family, have been developed recently and found to possess unique properties compared to conventional monocationic ILs. To establish a basis for understanding their novel properties, we studied the geometrical and electronic structures of the dication ([(mim)C3(mim)]2+) and the ion pair ([(mim)C3(mim)]2+-2Br) in the geminal dicationic IL 1,3-bis[3-methylimidazolium-yl]propane bromide by performing density functional theory calculations. The geometrical structures and relative stabilities for the dication and the ion pair are discussed, and their electronic properties are analyzed in detail. The intrinsic interaction between the dication and Br anions in the most stable conformer was investigated by performing the natural bond orbital analyses. Results for the dication and the ion pair are compared with those of the corresponding monocation ([C4mim]+) and ion pair ([C4mim]+-Br). 1H NMR spectroscopy for the most stable ion pair has been calculated and the general trend is found to be in fairly agreement with the experimental data.  相似文献   

4.
Micellization behavior of the twin-tailed surfactants can be modulated by the addition of various modifiers. Ionic liquids (ILs) are one of them and are documented here. The beauty of these environmentally benign neoteric molecules lies in their structural versatility. Here, we have investigated the effect of three ILs: 1-butyl-3-methylimidazolium bromide ([C4mim][Br]), 1-hexyl-3-methylimidazolium bromide ([C6mim][Br]), and 1-octyl-3-methylimidazolium bromide ([C8mim][Br]) on the aggregation and surface adsorption behavior of cationic gemini surfactant, bis(hexadecyldimethyl ammonium)propane dibromide (16-3-16) through experimentally measured electrical conductivities, surface tensions, and by spectral methods (UV-vis absorbance and fluorescence measurements). The main focus of the study is to observe the effect of added ILs on the critical micelle concentration (cmc), various surface parameters, aggregation number, and size of the aggregates of gemini surfactant. The results show that the more hydrophobic ILs, that is, [C6mim][Br] and [C8mim][Br] behave as electrolyte at lower concentration and cosurfactant at higher concentration, whereas moderately hydrophobic IL [C4mim][Br] acts as an electrolyte at all concentration ranges studied. The modulating effects of ILs were also compared with conventional electrolyte (NaBr) at similar conditions.  相似文献   

5.
Lysozyme crystals in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim]BF4), 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-butyl-3-methylimidazolium bromide([C4mim]Br), and 1,3-dimethylimidazolium iodine([dmim]I) were prepared, and the influence of ionic liquids (ILs) on the structure and activity change of lysozyme was investigated. Fourier transform infrared spectroscopy revealed the major secondary structures of α-helix and β-sheet for lysozyme. It was interesting to note that increases of the band near 2,935 and 1,656 cm?1 from Raman spectroscopy are attributed to the unfolding of lysozyme molecules. A shift in amide III from 1,230 to 1,270 cm?1 in adding [dmim]I occurs, indicating a transformation from β-sheet to random coil. With regard to adding [C4mim]BF4, [C4mim]Cl, and [C4mim]Br, α-helix and β-sheet are the predominant structures for lysozyme. The activity study showed that the ILs used brought a positive effect. Especially, [dmim]I leads to a drastic increase in relative activity, and its value reaches 50 %.  相似文献   

6.
In this work, the geometrical and electronic properties of the mono cationic ionic liquid 1‐hexyl‐3‐methylimidazolium halides ([C6(mim)]+_X?, X=Cl, Br and I) and dicationic ionic liquid 1,3‐bis[3‐methylimidazolium‐1‐yl]hexane halides ([C6(mim)2X2], X=Cl, Br and I) were studied using the density functional theory (DFT). The most stable conformer of these two types ionic liquids (IL) are determined and compared with each other. Results show that in the most stable conformers, in both monocationic ILs and dicationic ILs, the Cl? and Br? anions prefer to locate almost in the plane of the imidazolium ring whereas the I? anion prefers nearly vertical location respect to the imidazolium ring plan. Comparison of hydrogen bonding and ionic interactions in these two types of ionic liquids reveals that these ionic liquids can be formed hydrogen bond by Cl? and Br? anion. The calculated thermodynamic functions show that the interaction of cation — anion pair in the dicationic ionic liquids are more than monocationic ionic liquids and these interactions decrease with increasing the halide anion atomic weight.  相似文献   

7.
This study compares performances of the Critical Point-based revision of Perturbed-Chain SAFT (CP-PC-SAFT) and the SAFT of Variable Range and Mie Potential (SAFT-VR-Mie) in predicting the available data on VLE, LLVE, critical loci and saturated phase densities of systems comprising CO, O2, CH4, H2S, SO2, propane, the refrigerants R22, R23, R114, R124, R125, R125, R134a, and R1234ze(E) and ionic liquids (ILs) with 1-alkyl-3-methylimidazolium ([Cnmim]+) cations and bis(trifluoromethanesulfonyl)imide ([NTf2]), tetrafluoroborate ([BF4]) and hexafluorophosphate ([PF6]) anions. Both models were implemented in the entirely predictive manner with k12 = 0. The fundamental Global Phase Diagram considerations of the IL systems are discussed. It is demonstrated that despite a number of quantitative inaccuracies, both models are capable of reproducing the regularities characteristic for the considered systems, which makes them suitable for preliminary estimation of selectivity of the ILs in separating various gases.  相似文献   

8.
A calorimetric study of dissolution of the ionic liquids (ILs) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][NTf2]), 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C6mim][NTf2]), and 1-hexyl-3-methylimidazolium tris(trifluoromethylsulfonyl)methide ([C6mim][CTf3]) into chloroform (CHCl3) is presented with particular focus on [C2mim][NTf2]. The interpretation of the calorimetric data for [C2mim][NTf2] was aided by additional NMR self-diffusion measurements and viscosity measurements that through the Stokes–Einstein equation provided information about the average size of the species present. It is evident that the main equilibrium species are ion pairs and aggregates. An estimate for the enthalpy contribution from aggregate formation for [C2mim][NTf2] was found to be ?2.09 kJ per mol of added IL at 288.2 K and slightly decreasing in magnitude to ?1.11 kJ·mol?1 at 318.2 K. While all three ILs release heat upon dissolution into CHCl3, different temperature trends are observed demonstrating the fine balance of competing contributions from breaking IL interactions, cavity formation for the solutes to reside in, and the establishment of new solute–solvent interactions.  相似文献   

9.
In recent years, great progress has been made in the dissolution of cellulose with ionic liquids (ILs). However, the mechanism of cellulose dissolution, especially the role the IL cation played in the dissolution process, has not been clearly understood. Herein, the mixtures of cellulose with a series of imidazolium‐based chloride ionic liquids and 1‐butyl‐3‐methyl pyridinium chloride ([C4mpy]Cl) were simulated to study the effect that varying the heterocyclic structure and alkyl chain length of the IL cation has on the dissolution of cellulose. It was shown that the dissolution of cellulose in [C4mpy]Cl is better than that in [C4mim]Cl. For imidazolium‐based ILs, the shorter the alkyl chain is, the higher the solubility will be. In addition, an all‐atom force field for 1‐allyl‐3‐methyl imidazolium cation ([Amim]+) was developed, for the first time, to investigate the effect the electron‐withdrawing group within the alkyl chain of the IL cation has on the dissolution of cellulose. It was found that the interaction energy between [Amim]+ and cellulose was greater than that between [C3mim]+ and cellulose, indicating that the presence of electron‐withdrawing group in alkyl chain of the cation enhanced the interaction between the cation and cellulose due to the increase of electronegativity of the cations. These findings are used to assess the cationic effect on the dissolution of cellulose in ILs. They are also expected to be important for rational design of novel ILs for efficient dissolution of cellulose.  相似文献   

10.
Novel solvent-impregnated resins (SIRs) were prepared by treatment of styrene–divinylbenzene copolymer (LPS-500) with mixtures of the promising polydentante extractant (2-diphenylphosphoryl)-4-ethylphenoxy)methyl)diphenylphosphine oxide (L) and an ionic liquid [C4mim]+[Tf2N]for the extraction chromatography recovery of Nd(III) from nitric acid solutions. It was shown that introduction of the ionic liquid into the SIR composition results in considerable enhancement of the Nd(III) recovery efficiency compared with resin impregnated only by L in slightly acidic media. The influence of the L: ionic liquid molar ratio in the SIRs composition, their percentages, concentration of metal and HNO3 in the eluent, and acid type on the value of synergistic effect and adsorption efficiency of Nd(III) recovery was studied. The SIR containing 40% of mixture of L and [C4mim]+[Tf2N] with molar ratio 2:1 turned out to be the most efficient. The selectivity of Nd(III) separation from light and heavy rare-earth elements was studied and the optimal conditions of Nd(III) adsorption recovery and stripping by this SIR were chosen. It was found that in recovery efficiency of Nd(III) developed SIR exceeded the SIR containing Cyanex 923 (a mixture of monodentate trialkylphosphine oxides) and [C4mim]+[Tf2N].  相似文献   

11.
Several imidazolium-based ionic liquids (ILs) with varying cation alkyl chain length (C4–C10) and anion type (tetrafluoroborate ([BF4]), hexafluorophosphate ([PF6]) and bis(trifluoromethylsulfonyl)imide ([Tf2N])) were used as reaction media in the microwave polymerization of methacrylate-based stationary phases. Scanning electron micrographs and backpressures of poly(butyl methacrylate-ethylene dimethacrylate) (poly(BMA-EDMA)) monoliths synthesized in the presence of these ionic liquids demonstrated that porosity and permeability decreased when cation alkyl chain length and anion hydrophobicity were increased. Performance of these monoliths was assessed for their ability to separate parabens by capillary electrochromatography (CEC). Intra-batch precision (n = 3 columns) for retention time and peak area ranged was 0.80–1.13% and 3.71–4.58%, respectively. In addition, a good repeatability of RSDRetention time = <0.30% and ∼1.0%, RSDPeak area = <1.30% and <4.3%, and RSDEfficiency = <0.6% and <11.5% for intra-day and inter-day, respectively exemplify monolith performance reliability for poly(BMA-EDMA) fabricated using 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim][BF4]) porogen. This monolith was also tested for its potential in nanoLC to separate protein digests in gradient mode. ILs as porogens also fabricated different alkyl methacrylate (AMA) (C4–C18) monoliths. Furthermore, employing binary IL porogen mixture such as 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][Tf2N]) successfully decreased the denseness of the monolith, than when using [C4mim][Tf2N] IL alone, enabling a chromatographic run to be performed with 1:1 ratio produced baseline separation for the analytes. The combination of ILs and microwave irradiation made polymer synthesis very fast (∼10 min), entirely green (organic solvent-free) and energy saving process.  相似文献   

12.
Four Fe-containing ionic liquids (ILs) were synthesized by coupling of conventional imidazole ionic liquids [Cxmim]Cl (x = 4, 8, 12, 16) with FeCl3 and were characterized by FT-IR, Raman, ESI–MS and TG. All of the Fe-containing ILs were applied to the conversion of fructose into 5-hydroxymethylfurfural (HMF) in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) subsequently and the result showed that [C16mim]FeCl4 exhibited excellent catalytic performance. Then the different reaction parameters with [C16mim]FeCl4 as catalyst were studied in detail. A 92.8% yield of HMF was obtained with 0.03 g [C16mim]FeCl4 and 0.1 g fructose in 1.0050 g [Bmim]Cl at 80 °C for 40 min in fructose/[Bmim]Cl solution.  相似文献   

13.
The interaction between papain and two typical ionic liquids (ILs), 1-octyl-3-methylimidazolium chloride ([C8mim]Cl) and 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), was investigated by using fluorescence spectroscopy technique at a pH value of 7.4. The results suggested that ILs could quench the intrinsic fluorescence of papain probably via a static quenching mechanism. The binding constants were determined by employing the fluorescence quenching method. They were very small compared with that of volatile organic solvents, indicating that only very weak interaction between ILs and papain existed. The Gibbs free energy change (?G), enthalpy change (?H), and entropy change (?S) during the interaction of papain and ILs were estimated. Negative values of these parameters indicated that the interaction between ILs and papain was a spontaneous process, also implying that hydrogen bonding and van der Waals forces played important roles in the interaction processes.
Figure
Three-dimensional fluorescence spectrum of papain (0.2?g?L-1)  相似文献   

14.
在室温离子液体1-十二烷基-3-甲基氯化咪唑([C12mim]Cl)中,通过水热法制备了具有单晶结构的金红石纳米材料。采用X射线衍射、扫描电镜和透射电镜对样品进行了表征,结果显示所得样品为纯金红石相,形貌呈棒状。扫描电镜和透射电镜图样显示金红石纳米棒的直径约为15 nm,长度在10~100 nm之间。高分辨投射电镜图样显示金红石纳米棒为单晶结构,并沿c轴方向生长。实验结果表明离子液体[C12mim]Cl中的Cl-有利于金红石相生成,[C12mim]+起到了模板剂的作用并提高了金红石纳米棒的结晶度。  相似文献   

15.
The effect of imidazolium-based ionic liquids, ([C12mim][Cl] and [C8mim][Cl]), on the acid-base equilibria of two sulfonated indicators has been studied. The presence of ILs leads to decreased pK a values because of the stronger electrostatic interaction of cationic ILs with the basic forms of the indicators with more negative charge. The longer alkyl side chain of [C12mim][Cl] compared to [C8mim][Cl] results in stronger hydrophobic interaction of this IL with the basic forms of the dyes leading to a more effective decrease in the pK a values. Also, the transition points and transition intervals of the acid-base titration curves of the indicators were affected by the presence of ILs. It was found that the IL interaction with acid-base indicators also results in sharpening the acid-base titration curves of the indicators. From these observations, it is concluded that the presence of ILs can tune the pK a values of indicators. All the experiments were performed spectrophotometrically and the results were obtained using curve fitting methods.  相似文献   

16.
Silica materials (ILDEHPASGs) consisting of ionic liquids and di-(2-ethylhexyl)phosphoric acid (DEHPA) for Ce(III) extraction was prepared by a sol–gel method using the hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate ([C8mim]PF6) as porogen and solvent medium. The ILDEHPASGs were characterized by scanning electron microscopy, Brunauer–Emmett–Teller surface area, Fourier transform infrared, and thermogravimetric analyses. The results indicated the doping of DEHPA and [C8mim]PF6 in ILDEHPASG-3 would evidently affect the formation of porous structure of sol–gel materials. ILDEHPASG-3 also possessed more channels and macropores than the blank sorbent; the surface area and pore volume of ILDEHPASG-3 were 409 m2 g?1 and 0.444 cm3 g?1, respectively. [C8mim]PF6 and DEHPA were only physically confined or entrapped in the growing covalent silica network rather than chemically bound to the inorganic matrix. The majority of [C8mim]PF6 and DEHPA were stably immobilized in the gel. Then, the effects of contact time and pH were determined. The results showed the sorption of Ce(III) strongly depended on the contact time and pH, and ILDEHPASGs had high sorption ability for Ce(III). The results were analyzed by both Langmuir and Freundlich adsorption isotherm models, and the latter was found to give a better fit.  相似文献   

17.
Density functional theory is employed to study the interaction energies between dibenzothiophene (DBT) and 1-alkyl-3-methylimidazolium tetrafluoroborate ([C n mim]+[BF4]?). The structures of DBT, 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim]+[BF4]?), 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim]+[BF4]?), 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim]+[BF4]?), 1-octyl-3-methylimidazolium tetrafluoroborate ([C8mim]+[BF4]?), [C2mim]+[BF4]?–DBT, [C4mim]+[BF4]?–DBT, [C6mim]+[BF4]?–DBT and [C8mim]+[BF4]?–DBT systems are optimized systematically at the B3LYP/6-31G(d,p) level, and the most stable geometries are obtained by NBO and AIM analyses. The results indicate that DBT and imidazolium rings of ionic liquids are parallel to each other. It is found that the [BF4]? anion prefers to be located close to a C1–H9 proton ring in the vicinity of the imidazolium ring and the most stable gas-phase structure of [C n mim]+[BF4]? has four hydrogen bonds between [C n mim]+ and [BF4]?. There are hydrogen bonding interactions, π–π and C–H–π interactions between [C8mim]+[BF4]? and DBT, which is confirmed by NBO and AIM analyses. The calculated interaction energies for the studied ionic liquids can be used to interpret a better extracting ability of [C8mim]+[BF4]? to remove DBT, due to stronger interactions between [C8mim]+[BF4]? and DBT, in agreement with the experimental results of dibenzothiophene extraction by [C n mim]+[BF4]?.  相似文献   

18.
The C?D bond stretching vibrations of deuterated dimethyl sulfoxide ([D6]DMSO) and the C2?H bond stretching vibrations of 1,1,1,5,5,5‐hexafluoropentane‐2,4‐dione (hfac) ligand in anion are chosen as probes to elucidate the solvent–solute interaction between chelate‐based ionic liquids (ILs) and DMSO by vibrational spectroscopic studies. The indirect effect from the interaction of the adjacent S=O functional group of DMSO with the cation [C10mim]+ and anion [Mn(hfac)3]? of the ILs leads to the blue‐shift of the C?D stretching vibrations of DMSO. The C2?H bond stretching vibrations in hfac ligand is closely related to the ionic hydrogen bond strength between the cation and anion of chelate‐based ILs. EPR studies reveal that the crystal field of the central metal is kept when the chelate‐based ILs are in different microstructure environment in the solution.  相似文献   

19.
Liquid multi‐ion systems made by combining two or more salts can exhibit charge ordering and interactions not found in the parent salts, leading to new sets of properties. This is investigated herein by examining a liquid comprised of a single cation, 1‐ethyl‐3‐methylimidazolium ([C2mim]+), and two anions with different properties, acetate ([OAc]?) and bis(trifluoromethylsulfonyl)imide ([NTf2]?). NMR and IR spectroscopy indicate that the electrostatic interactions are quite different from those in either [C2mim][OAc] or [C2mim][NTf2]. This is attributed to the ability of [OAc]? to form complexes with the [C2mim]+ ions at greater than 1:1 stoichiometries by drawing [C2mim]+ ions away from the less basic [NTf2]? ions. Solubility studies with molecular solvents (ethyl acetate, water) and pharmaceuticals (ibuprofen, diphenhydramine) show nonlinear trends as a function of ion content, which suggests that solubility can be tuned through changes in the ionic compositions.  相似文献   

20.
The activity and stability of laccase and their kinetic mechanisms in water soluble ionic liquids (ILs): 1-butyl-3-methyl imidazolium chloride [C4mim][Cl], 1-octyl-3-methyl imidazolium chloride [C8mim][Cl], and 1-decyl-3-methyl imidazolium chloride [C10mim][Cl] were investigated. The results show that an IL concentration up to 10% is satisfactory for initial laccase activity at pH 9.0. The laccase stability was well maintained in [C4mim][Cl] IL when compared to the control. The inactivation of laccase increases with the length of the alkyl chain in the IL: [C10mim][Cl] > [C8mim][Cl] > [C4mim][Cl]. The kinetic studies in the presence of ABTS as substrate allowed calculating the Michaelis–Menten parameters. Among the ILs, [C4mim][Cl] was the suitable choice attending to laccase activity and stability. Alkyl chains in the ions of ILs have a deactivating effect on laccase, which increases strongly with the length of the alkyl chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号