首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extracting latent nonlinear dynamics from observed time-series data is important for understanding a dynamic system against the background of the observed data. A state space model is a probabilistic graphical model for time-series data, which describes the probabilistic dependence between latent variables at subsequent times and between latent variables and observations. Since, in many situations, the values of the parameters in the state space model are unknown, estimating the parameters from observations is an important task. The particle marginal Metropolis–Hastings (PMMH) method is a method for estimating the marginal posterior distribution of parameters obtained by marginalization over the distribution of latent variables in the state space model. Although, in principle, we can estimate the marginal posterior distribution of parameters by iterating this method infinitely, the estimated result depends on the initial values for a finite number of times in practice. In this paper, we propose a replica exchange particle marginal Metropolis–Hastings (REPMMH) method as a method to improve this problem by combining the PMMH method with the replica exchange method. By using the proposed method, we simultaneously realize a global search at a high temperature and a local fine search at a low temperature. We evaluate the proposed method using simulated data obtained from the Izhikevich neuron model and Lévy-driven stochastic volatility model, and we show that the proposed REPMMH method improves the problem of the initial value dependence in the PMMH method, and realizes efficient sampling of parameters in the state space models compared with existing methods.  相似文献   

2.
This paper is concerned with computational aspects of a multidimensional population balance model of a wet granulation process. Wet granulation is a manufacturing method to form composite particles, granules, from small particles and binders. A detailed numerical study of a stochastic particle algorithm for the solution of a five-dimensional population balance model for wet granulation is presented. Each particle consists of two types of solids (containing pores) and of external and internal liquid (located in the pores). Several transformations of particles are considered, including coalescence, compaction and breakage. A convergence study is performed with respect to the parameter that determines the number of numerical particles. Averaged properties of the system are computed. In addition, the ensemble is subdivided into practically relevant size classes and analysed with respect to the amount of mass and the particle porosity in each class. These results illustrate the importance of the multidimensional approach. Finally, the kinetic equation corresponding to the stochastic model is discussed.  相似文献   

3.
《Physica A》2006,362(2):450-464
This paper develops a multivariate long-memory stochastic volatility model which allows the multi-asset long-range dependence in the volatility process. The motivation is from the fact that both autocorrelations and cross-correlations of some proxies of exchange rate volatility exhibit strong evidence of long-memory behavior. The statistical properties of the new stochastic volatility model provide theoretical explanation to the common findings that long memory volatility properties are more apparent if we use absolute return as a volatility proxy than squared return. Results of the real data application show that our model outperforms an existing multivariate stochastic volatility model.  相似文献   

4.
Recently a new class of approximating coarse-grained stochastic processes and associated Monte Carlo algorithms were derived directly from microscopic stochastic lattice models for the adsorption/desorption and diffusion of interacting particles(12,13,15). The resulting hierarchy of stochastic processes is ordered by the level of coarsening in the space/time dimensions and describes mesoscopic scales while retaining a significant amount of microscopic detail on intermolecular forces and particle fluctuations. Here we rigorously compute in terms of specific relative entropy the information loss between non-equilibrium exact and approximating coarse-grained adsorption/desorption lattice dynamics. Our result is an error estimate analogous to rigorous error estimates for finite element/finite difference approximations of Partial Differential Equations. We prove this error to be small as long as the level of coarsening is small compared to the range of interaction of the microscopic model. This result gives a first mathematical reasoning for the parameter regimes for which approximating coarse-grained Monte Carlo algorithms are expected to give errors within a given tolerance. MSC (2000) subject classifications: 82C80; 60J22; 94A17  相似文献   

5.
Asbstract By casting stochastic optimal estimation of time series in path integral form, one can apply analytical and computational techniques of equilibrium statistical mechanics. In particular, one can use standard or accelerated Monte Carlo methods for smoothing, filtering and/or prediction. Here we demonstrate the applicability and efficiency of generalized (nonlocal) hybrid Monte Carlo and multigrid methods applied to optimal estimation, specifically smoothing. We test these methods on a stochastic diffusion dynamics in a bistable potential. This particular problem has been chosen to illustrate the speedup due to the nonlocal sampling technique, and because there is an available optimal solution which can be used to validate the solution via the hybrid Monte Carlo strategy. In addition to showing that the nonlocal hybrid Monte Carlo is statistically accurate, we demonstrate a significant speedup compared with other strategies, thus making it a practical alternative to smoothing/filtering and data assimilation on problems with state vectors of fairly large dimensions, as well as a large total number of time steps.  相似文献   

6.
A Girsanov particle filter in nonlinear engineering dynamics   总被引:1,自引:0,他引:1  
In this Letter, we propose a novel variant of the particle filter (PF) for state and parameter estimations of nonlinear engineering dynamical systems, modelled through stochastic differential equations (SDEs). The aim is to address a possible loss of accuracy in the estimates due to the discretization errors, which are inevitable during numerical integration of the SDEs. In particular, we adopt an explicit local linearization of the governing nonlinear SDEs and the resulting linearization errors in the estimates are corrected using Girsanov transformation of measures. Indeed, the linearization scheme via transformation of measures provides a weak framework for computing moments and this fits in well with any stochastic filtering strategy wherein estimates are themselves statistical moments. We presently implement the strategy using a bootstrap PF and numerically illustrate its performance for state and parameter estimations of the Duffing oscillator with linear and nonlinear measurement equations.  相似文献   

7.
We continue our investigation of stochastic lattice gases as a (highly parallel) means of simulating given PDEs, in this case Burgers' equation in one dimension. The lattice dynamics consists of stochastic unidirectional particle displacement, and our attention is turned toward the reliability of the model, i.e., its ability to reproduce the unique physical solution of Burgers' equation. Lattice gas results are discussed and compared against finite-difference calculations and exact solutions in examples which include shocks and rarefaction waves.  相似文献   

8.
We investigate the critical behavior of a stochastic lattice model describing a General Epidemic Process. By means of a Monte Carlo procedure, we simulate the model on a regular square lattice and follow the spreading of an epidemic process with immunization. A finite size scaling analysis is employed to determine the critical point as well as some critical exponents. We show that the usual scaling analysis of the order parameter moment ratio does not provide an accurate estimate of the critical point. Precise estimates of the critical quantities are obtained from data of the order parameter variation rate and its fluctuations. Our numerical results corroborate that this model belongs to the dynamic isotropic percolation universality class. We also check the validity of the hyperscaling relation and present data collapse curves which reinforce the accuracy of the estimated critical parameters.  相似文献   

9.
We present results on the Swendsen-Wang dynamics for the Ising ferromagnet in the low-temperature case without external field in the thermodynamic limit. We discuss in particular the rate of convergence to the equilibrium Gibbs state in finite and infinite volume, the absence of ergodicity in the infinite volume, and the long-time behavior of the probability distribution of the dynamics for various starting configurations. Our results are purely dynamical in nature in the sense that we never use the reversibility of the process with respect to the Gibbs state, and they apply to a stochastic particle system withnon- Gibbsian invariant measure.  相似文献   

10.
The most common stochastic volatility models such as the Ornstein–Uhlenbeck (OU), the Heston, the exponential OU (ExpOU) and Hull–White models define volatility as a Markovian process. In this work we check the applicability of the Markovian approximation at separate times scales and will try to answer the question which of the stochastic volatility models indicated above is the most realistic. To this end we consider the volatility at both short (a few days) and long (a few months) time scales as a Markovian process and estimate for it the coefficients of the Kramers–Moyal expansion using the data for Dow-Jones Index. It has been found that the empirical data allow to take only the first two coefficients of expansion to be non-zero that define form of the volatility stochastic differential equation of Itô. It proved to be that for the long time scale the empirical data support the ExpOU model. At the short time scale the empirical model coincides with ExpOU model for the small volatility quantities only.  相似文献   

11.
In this paper, a new formulation of the projection approach is introduced for stand-alone probability density function (PDF) methods. The method is suitable for applications in low-Mach number transient turbulent reacting flows. The method is based on a fractional step method in which first the advection–diffusion–reaction equations are modelled and solved within a particle-based PDF method to predict an intermediate velocity field. Then the mean velocity field is projected onto a space where the continuity for the mean velocity is satisfied. In this approach, a Poisson equation is solved on the Eulerian grid to obtain the mean pressure field. Then the mean pressure is interpolated at the location of each stochastic Lagrangian particle. The formulation of the Poisson equation avoids the time derivatives of the density (due to convection) as well as second-order spatial derivatives. This in turn eliminates the major sources of instability in the presence of stochastic noise that are inherent in particle-based PDF methods. The convergence of the algorithm (in the non-turbulent case) is investigated first by the method of manufactured solutions. Then the algorithm is applied to a one-dimensional turbulent premixed flame in order to assess the accuracy and convergence of the method in the case of turbulent combustion. As a part of this work, we also apply the algorithm to a more realistic flow, namely a transient turbulent reacting jet, in order to assess the performance of the method.  相似文献   

12.
In the paper, we begin with introducing a novel scale mixture of normal distribution such that its leptokurticity and fat-tailedness are only local, with this “locality” being separately controlled by two censoring parameters. This new, locally leptokurtic and fat-tailed (LLFT) distribution makes a viable alternative for other, globally leptokurtic, fat-tailed and symmetric distributions, typically entertained in financial volatility modelling. Then, we incorporate the LLFT distribution into a basic stochastic volatility (SV) model to yield a flexible alternative for common heavy-tailed SV models. For the resulting LLFT-SV model, we develop a Bayesian statistical framework and effective MCMC methods to enable posterior sampling of the parameters and latent variables. Empirical results indicate the validity of the LLFT-SV specification for modelling both “non-standard” financial time series with repeating zero returns, as well as more “typical” data on the S&P 500 and DAX indices. For the former, the LLFT-SV model is also shown to markedly outperform a common, globally heavy-tailed, t-SV alternative in terms of density forecasting. Applications of the proposed distribution in more advanced SV models seem to be easily attainable.  相似文献   

13.
We model radiation transport by advancing computational photons through phase space with solutions to a set of stochastic differential equations of motion. Random numbers that appear in the equations of motion are sampled with deterministically chosen Gaussian quadrature weights and abscissas. In this way, the advantages of particle Monte Carlo are realized without generating statistical noise. We demonstrate this technique by performing one- and two-dimensional test problems in which gray radiation is energetically coupled to stationary material. Scattering is accomplished with a Fokker-Planck scattering operator. Free streaming, diffusion and Marshak waves are recovered in appropriate limits.  相似文献   

14.
This paper considers a new model of individual displacement, based on fish motion, the so-called Persistent Turning Walker (PTW) model, which involves an Ornstein-Uhlenbeck process on the curvature of the particle trajectory. The goal is to show that its large time and space scale dynamics is of diffusive type, and to provide an analytic expression of the diffusion coefficient. Two methods are investigated. In the first one, we compute the large time asymptotics of the variance of the individual stochastic trajectories. The second method is based on a diffusion approximation of the kinetic formulation of these stochastic trajectories. The kinetic model is a Fokker-Planck type equation posed in an extended phase-space involving the curvature among the kinetic variables. We show that both methods lead to the same value of the diffusion constant. We present some numerical simulations to illustrate the theoretical results.  相似文献   

15.
Traditional Monte Carlo ray-tracing (MCRT) methods for continuous participating media are not applicable in media represented by point masses (or stochastic particles) frequently encountered in combustion modeling. In the authors’ previous work several ray models and particle models have been proposed for radiation simulations in such media. In the present paper an efficient emission scheme is developed for MCRT in highly inhomogeneous media represented by particle fields. Ray energies are limited to a narrow range to reduce statistical error, by having particles emit numbers of photons proportional to their emissive power (including combination of weak particles). A method to evaluate the radiative heat source, required by the overall energy equation, is also developed. A particle field representing the highly inhomogeneous medium in a turbulent jet flame is employed to test the proposed methods.  相似文献   

16.
T.S. Biró 《Physica A》2008,387(7):1603-1612
In this paper we study the possible microscopic origin of heavy-tailed probability density distributions for the price variation of financial instruments. We extend the standard log-normal process to include another random component in the so-called stochastic volatility models. We study these models under an assumption, akin to the Born-Oppenheimer approximation, in which the volatility has already relaxed to its equilibrium distribution and acts as a background to the evolution of the price process. In this approximation, we show that all models of stochastic volatility should exhibit a scaling relation in the time lag of zero-drift modified log-returns. We verify that the Dow-Jones Industrial Average index indeed follows this scaling. We then focus on two popular stochastic volatility models, the Heston and Hull-White models. In particular, we show that in the Hull-White model the resulting probability distribution of log-returns in this approximation corresponds to the Tsallis (t-Student) distribution. The Tsallis parameters are given in terms of the microscopic stochastic volatility model. Finally, we show that the log-returns for 30 years Dow Jones index data is well fitted by a Tsallis distribution, obtaining the relevant parameters.  相似文献   

17.
This paper considers monitoring an anomaly from sequentially observed time series with heteroscedastic conditional volatilities based on the cumulative sum (CUSUM) method combined with support vector regression (SVR). The proposed online monitoring process is designed to detect a significant change in volatility of financial time series. The tuning parameters are optimally chosen using particle swarm optimization (PSO). We conduct Monte Carlo simulation experiments to illustrate the validity of the proposed method. A real data analysis with the S&P 500 index, Korea Composite Stock Price Index (KOSPI), and the stock price of Microsoft Corporation is presented to demonstrate the versatility of our model.  相似文献   

18.
牟威圩  许小亮 《物理学报》2006,55(6):2871-2876
在规则格子点阵中,活跃点逐步动态地以可变概率感染附近空缺点而生成系综.利用感染概率替代系综温度,给粒子划分能级,可以用巨正则系综配分函数表征体系.蒙特卡洛方法模拟验证了该体系在逾渗阈值处的相变行为.提出了一种新的较为普适的估算规则点阵逾渗阈值的方法.对介质基底上金属薄膜的实验研究验证了该感染生长模型的合理性.由此给出了格子点阵的固有属性(逾渗)如何在粒子聚集成团簇这一动态过程中体现出来的物理模型. 关键词: 逾渗 系综 蒙特卡洛方法 生长模型  相似文献   

19.
We develop and numerically illustrate an exact solution of the multivariate, stochastic, differential equations that govern the velocity and position of a charged particle in a plane normal to a uniform, stationary, magnetic field. The equations self-consistently incorporate the Lorentz force into an Ornstein-Uhlenbeck collision model. Properties of the solution in the infinite dissipation limit are explored and the spectral energy density function is found  相似文献   

20.
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号